Data assimilation in a coupled physical-biogeochemical model of the California current system using an incremental lognormal 4-dimensional variational approach: Part 3—Assimilation in a realistic context using satellite and in situ observations

Hajoon Song, Christopher A. Edwards, Andrew M. Moore, Jerome Fiechter

Research output: Contribution to journalArticlepeer-review

31 Citations (Scopus)

Abstract

A fully coupled physical and biogeochemical ocean data assimilation system is tested in a realistic configuration of the California Current System using the Regional Ocean Modeling System. In situ measurements for sea surface temperature and salinity as well as satellite observations for temperature, sea level and chlorophyll are used for the year 2000. Initial conditions of the combined physical and biogeochemical state are adjusted at the start of each 3-day assimilation cycle. Data assimilation results in substantial reduction of root-mean-square error (RMSE) over unconstrained model output. RMSE for physical variables is slightly lower when assimilating only physical variables than when assimilating both physical variables and surface chlorophyll. Surface chlorophyll RMSE is lowest when assimilating both physical variables and surface chlorophyll. Estimates of subsurface, nitrate and chlorophyll show modest improvements over the unconstrained model run relative to independent, unassimilated in situ data. Assimilation adjustments to the biogeochemical initial conditions are investigated within different regions of the California Current System. The incremental, lognormal 4-dimensional data assimilation method tested here represents a viable approach to coupled physical biogeochemical state estimation at practical computational cost.

Original languageEnglish
Pages (from-to)159-172
Number of pages14
JournalOcean Modelling
Volume106
DOIs
Publication statusPublished - 2016 Oct 1

Bibliographical note

Publisher Copyright:
© 2016 Elsevier Ltd

All Science Journal Classification (ASJC) codes

  • Computer Science (miscellaneous)
  • Oceanography
  • Geotechnical Engineering and Engineering Geology
  • Atmospheric Science

Fingerprint

Dive into the research topics of 'Data assimilation in a coupled physical-biogeochemical model of the California current system using an incremental lognormal 4-dimensional variational approach: Part 3—Assimilation in a realistic context using satellite and in situ observations'. Together they form a unique fingerprint.

Cite this