Cytotoxicity and terminal differentiation of human oral keratinocyte by indium ions from a silver-palladium-gold-indium dental alloy

Jung Hwan Lee, Sang Hee Seo, Sang Bae Lee, Ji Yeon Om, Kwang Mahn Kim, Kyoung Nam Kim

Research output: Contribution to journalArticlepeer-review

13 Citations (Scopus)

Abstract

Objective Dental alloys containing indium (In) have been used in dental restoration for two decades; however, no study has investigated the biological effects of In ions, which may be released in the oral cavity, on human oral keratinocytes. The objective of the present study was to investigate the biological effects of In ions on human oral keratinocyte after confirming their release from a silver-palladium-gold-indium (Ag-Pd-Au-In) dental alloy. Methods As a corrosion assay, a static immersion tests were performed by detecting the released ions in the corrosion solution from the Ag-Pd-Au-In dental alloy using inductively coupled plasma atomic emission spectroscopy. The cytotoxicity and biological effects of In ions were then studied with In compounds in three human oral keratinocyte cell lines: immortalized human oral keratinocyte (IHOK), HSC-2, and SCC-15. Results Higher concentrations of In and Cu ions were detected in Ag-Pd-Au-In (P < 0.05) than in Ag-Pd-Au, and AgCl deposition occurred on the surface of Ag-Pd-Au-In after a 7-day corrosion test due to its low corrosion resistance. At high concentrations, In ions induced cytotoxicity; however, at low concentrations (∼0.8 In3+ mM), terminal differentiation was observed in human oral keratinocytes. Intracellular ROS was revealed to be a key component of In-induced terminal differentiation. Significance In ions were released from dental alloys containing In, and high concentrations of In ions resulted in cytotoxicity, whereas low concentrations induced the terminal differentiation of human oral keratinocytes via increased intracellular ROS. Therefore, dental alloys containing In must be biologically evaluated for their safe use.

Original languageEnglish
Pages (from-to)123-133
Number of pages11
JournalDental Materials
Volume31
Issue number2
DOIs
Publication statusPublished - 2015 Feb 1

Bibliographical note

Funding Information:
This work was supported by grants from the Yonsei Dental Testing and Evaluation Center (2014) and from Ministry of Food and Drug Safety in Korea ( 13172MFDS508 ).

Publisher Copyright:
© 2014 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.

All Science Journal Classification (ASJC) codes

  • Materials Science(all)
  • Dentistry(all)
  • Mechanics of Materials

Fingerprint

Dive into the research topics of 'Cytotoxicity and terminal differentiation of human oral keratinocyte by indium ions from a silver-palladium-gold-indium dental alloy'. Together they form a unique fingerprint.

Cite this