TY - GEN
T1 - Crosscorrelation of q-ary power residue sequences of period p
AU - Kim, Young Joon
AU - Gong, Guang
AU - Song, Hong Yeop
AU - Chung, Habong
PY - 2006
Y1 - 2006
N2 - Let p be an odd prime, q be a divisor of p - 1 and μ be a primitive root mod p. A q-ary PRS (power residue sequence) of period p is defined as s(n) = k if n ε Ck where Ck = {μqt+k\t = 0, 1,2,...,T - 1} where T= (p - 1)/q. In this paper, we prove that the maximum absolute value of the periodic crosscorrelation of two distinct q-ary PRS's of period p is upper bounded by √p + 2.
AB - Let p be an odd prime, q be a divisor of p - 1 and μ be a primitive root mod p. A q-ary PRS (power residue sequence) of period p is defined as s(n) = k if n ε Ck where Ck = {μqt+k\t = 0, 1,2,...,T - 1} where T= (p - 1)/q. In this paper, we prove that the maximum absolute value of the periodic crosscorrelation of two distinct q-ary PRS's of period p is upper bounded by √p + 2.
UR - http://www.scopus.com/inward/record.url?scp=33947690605&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=33947690605&partnerID=8YFLogxK
U2 - 10.1109/ISIT.2006.261604
DO - 10.1109/ISIT.2006.261604
M3 - Conference contribution
AN - SCOPUS:33947690605
SN - 1424405041
SN - 9781424405046
T3 - IEEE International Symposium on Information Theory - Proceedings
SP - 311
EP - 315
BT - Proceedings - 2006 IEEE International Symposium on Information Theory, ISIT 2006
T2 - 2006 IEEE International Symposium on Information Theory, ISIT 2006
Y2 - 9 July 2006 through 14 July 2006
ER -