Correlation Tracking via Joint Discrimination and Reliability Learning

Chong Sun, Dong Wang, Huchuan Lu, Ming Hsuan Yang

Research output: Chapter in Book/Report/Conference proceedingConference contribution

156 Citations (Scopus)

Abstract

For visual tracking, an ideal filter learned by the correlation filter (CF) method should take both discrimination and reliability information. However, existing attempts usually focus on the former one while pay less attention to reliability learning. This may make the learned filter be dominated by the unexpected salient regions on the feature map, thereby resulting in model degradation. To address this issue, we propose a novel CF-based optimization problem to jointly model the discrimination and reliability information. First, we treat the filter as the element-wise product of a base filter and a reliability term. The base filter is aimed to learn the discrimination information between the target and backgrounds, and the reliability term encourages the final filter to focus on more reliable regions. Second, we introduce a local response consistency regular term to emphasize equal contributions of different regions and avoid the tracker being dominated by unreliable regions. The proposed optimization problem can be solved using the alternating direction method and speeded up in the Fourier domain. We conduct extensive experiments on the OTB-2013, OTB-2015 and VOT-2016 datasets to evaluate the proposed tracker. Experimental results show that our tracker performs favorably against other state-of-the-art trackers.

Original languageEnglish
Title of host publicationProceedings - 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR 2018
PublisherIEEE Computer Society
Pages489-497
Number of pages9
ISBN (Electronic)9781538664209
DOIs
Publication statusPublished - 2018 Dec 14
Event31st Meeting of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR 2018 - Salt Lake City, United States
Duration: 2018 Jun 182018 Jun 22

Publication series

NameProceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition
ISSN (Print)1063-6919

Conference

Conference31st Meeting of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR 2018
Country/TerritoryUnited States
CitySalt Lake City
Period18/6/1818/6/22

Bibliographical note

Funding Information:
This paper is partially supported by the Natural Science Foundation of China #61502070, #61725202, #61472060. Chong Sun and Ming-Hsuan Yang are also supported in part by NSF CAREER (No. 1149783), gifts from Adobe, Toyota, Panasonic, Samsung, NEC, Verisk, and Nvidia.

Publisher Copyright:
© 2018 IEEE.

All Science Journal Classification (ASJC) codes

  • Software
  • Computer Vision and Pattern Recognition

Fingerprint

Dive into the research topics of 'Correlation Tracking via Joint Discrimination and Reliability Learning'. Together they form a unique fingerprint.

Cite this