Correlation between frictional heat and triboelectric charge: In operando temperature measurement during metal-polymer physical contact

Dong Woo Lee, Dae Sol Kong, Jong Hun Kim, Sang Hyeok Park, Ying Chieh Hu, Young Joon Ko, Chan Bae Jeong, Seoku Lee, Joong Il Jake Choi, Gwan Hyoung Lee, Minbaek Lee, Jeong Jae Wie, Ki Soo Chang, Jeong Young Park, Jong Hoon Jung

Research output: Contribution to journalArticlepeer-review

2 Citations (Scopus)

Abstract

In operando techniques have emerged to elucidate the fundamental mechanism of triboelectrification via relevant physical quantity measurement during the physical contact of two materials. Here, a correlation between frictional heat and triboelectric charge is reported in a metal-polymer triboelectric nanogenerator through the in operando temperature measurement. Fluorine-doped tin oxide (FTO) metal is slid back-and-forth under different contact pressures across polydimethylsiloxane (PDMS) polymers having different degrees of crosslinking, i.e., mixing ratio. Both the triboelectric charge and temperature variation increase and become saturated with different time-constants. Notably, the saturated triboelectric charge increases, while the saturated temperature decreases, with increasing mixing ratio. In contrast, both saturated triboelectric charge and temperature increase with increasing contact pressure. X-ray photoemission spectroscopy reveals that chemical bonds are modified inhomogeneously at the surface, and that charged materials are transferred from PDMS to FTO in accordance with the mixing ratio- and sliding time-dependent triboelectric charges. Frictional heat plays a distributive role in bond rupture and temperature variation, depending on the activation energy and frictional coefficient of PDMS. In operando temperature variation measurement provides important information on the specific bonds for triboelectrification and detailed charge-transfer process during physical contact.

Original languageEnglish
Article number107813
JournalNano Energy
Volume103
DOIs
Publication statusPublished - 2022 Dec 1

Bibliographical note

Publisher Copyright:
© 2022 The Authors

All Science Journal Classification (ASJC) codes

  • Renewable Energy, Sustainability and the Environment
  • General Materials Science
  • Electrical and Electronic Engineering

Fingerprint

Dive into the research topics of 'Correlation between frictional heat and triboelectric charge: In operando temperature measurement during metal-polymer physical contact'. Together they form a unique fingerprint.

Cite this