Abstract
The first-order div least squares finite element methods (LSFEMs) allow for an immediate a posteriori error control by the computable residual of the least squares functional. This paper establishes an adaptive refinement strategy based on some equivalent refinement indicators. Since the first-order div LSFEM measures the flux errors in H (div), the data resolution error measures the L 2 norm of the right-hand side f minus the piecewise polynomial approximation II f without a mesh-size factor. Hence the data resolution term is neither an oscillation nor of higher order and consequently requires a particular treatment, e.g., by the thresholding second algorithm due to Binev and DeVore. The resulting novel adaptive LSFEM with separate marking converges with optimal rates relative to the notion of a nonlinear approximation class.
Original language | English |
---|---|
Pages (from-to) | 43-62 |
Number of pages | 20 |
Journal | SIAM Journal on Numerical Analysis |
Volume | 53 |
Issue number | 1 |
DOIs | |
Publication status | Published - 2015 Jan 1 |
Bibliographical note
Publisher Copyright:© 2015 Society for Industrial and Applied Mathematics.
All Science Journal Classification (ASJC) codes
- Numerical Analysis
- Computational Mathematics
- Applied Mathematics