Controlled growth of semiconducting nanowire, nanowall, and hybrid nanostructures on graphene for piezoelectric nanogenerators

Brijesh Kumar, Keun Young Lee, Hyun Kyu Park, Seung Jin Chae, Young Hee Lee, Sang Woo Kim

Research output: Contribution to journalArticlepeer-review

175 Citations (Scopus)

Abstract

Precise control of morphologies of one-or two-dimensional nanostructures during growth has not been easy, usually degrading device performance and therefore limiting applications to various advanced nanoscale electronics and optoelectronics. Graphene could be a platform to serve as a substrate for both morphology control and direct use of electrodes due to its ideal monolayer flatness with rr electrons. Here, we report that, by using graphene directly as a substrate, vertically well-aligned zinc oxide (ZnO) nanowires and nanowalls were obtained systematically by controlling gold (Au) catalyst thickness and growth time without inflicting significant thermal damage on the graphene layer during thermal chemical vapor deposition of ZnO at high temperature of about 900°C. We clarify Au nanoparticle positions at graphene-ZnO heterojunctions that are very important in realizing advanced nanoscale electronic and optoelectronic applications of such nanostructures. Further, we demonstrate a piezoelectric nanogenerator that was fabricated from the vertically aligned nanowire-nanowall ZnO hybrid/graphene structure generates a new type of direct current through the specific electron dynamics in the nanowire-nanowall hybrid.

Original languageEnglish
Pages (from-to)4197-4204
Number of pages8
JournalACS Nano
Volume5
Issue number5
DOIs
Publication statusPublished - 2011 May 24

All Science Journal Classification (ASJC) codes

  • Materials Science(all)
  • Engineering(all)
  • Physics and Astronomy(all)

Fingerprint

Dive into the research topics of 'Controlled growth of semiconducting nanowire, nanowall, and hybrid nanostructures on graphene for piezoelectric nanogenerators'. Together they form a unique fingerprint.

Cite this