TY - JOUR
T1 - Control of current hysteresis of networked single-walled carbon nanotube transistors by a ferroelectric polymer gate insulator
AU - Choi, Yeon Sik
AU - Sung, Jinwoo
AU - Kang, Seok Ju
AU - Cho, Sung Hwan
AU - Hwang, Ihn
AU - Hwang, Sun Kak
AU - Huh, June
AU - Kim, Ho Cheol
AU - Bauer, Siegfried
AU - Park, Cheolmin
PY - 2013/3/6
Y1 - 2013/3/6
N2 - Films made of 2D networks of single-walled carbon nanotubes (SWNTs) are one of the most promising active-channel materials for field-effect transistors (FETs) and have a variety of flexible electronic applications, ranging from biological and chemical sensors to high-speed switching devices. Challenges, however, still remain due to the current hysteresis of SWNT-containing FETs, which has hindered further development. A new and robust method to control the current hysteresis of a SWNT-network FET is presented, which involves the non-volatile polarization of a ferroelectric poly(vinylidene fluoride-trifluoroethylene) (P(VDF-TrFE)) gate insulator. A top-gate FET with a solution-processed SWNT-network exhibits significant suppression of the hysteresis when the gate-voltage sweep is greater than the coercive field of the ferroelectric polymer layer (≈50 MV m-1). These near-hysteresis-free characteristics are believed to be due to the characteristic hysteresis of the P(VDF-TrFE), resulting from its non-volatile polarization, which makes effective compensation for the current hysteresis of the SWNT-network FETs. The onset voltage for hysteresis-minimized operation is able to be tuned simply by controlling the thickness of the ferroelectric film, which opens the possibility of operating hysteresis-free devices with gate voltages down to a few volts. A simple and robust method is developed to control the characteristic current hysteresis of single-walled carbon nanotube (SWNT) network field-effect transistiors (FETs) by non-volatile ferroelectric polarization. A top-gate FET with a solution-processed SWNT network channel layer and a ferroelectric poly(vinylidene fluoride-trifluoroethylene) (P(VDF-TrFE)) gate insulator effectively suppresses the current hysteresis when the gate-voltage sweep exceeds the coercive voltage of the P(VDF-TrFE) film.
AB - Films made of 2D networks of single-walled carbon nanotubes (SWNTs) are one of the most promising active-channel materials for field-effect transistors (FETs) and have a variety of flexible electronic applications, ranging from biological and chemical sensors to high-speed switching devices. Challenges, however, still remain due to the current hysteresis of SWNT-containing FETs, which has hindered further development. A new and robust method to control the current hysteresis of a SWNT-network FET is presented, which involves the non-volatile polarization of a ferroelectric poly(vinylidene fluoride-trifluoroethylene) (P(VDF-TrFE)) gate insulator. A top-gate FET with a solution-processed SWNT-network exhibits significant suppression of the hysteresis when the gate-voltage sweep is greater than the coercive field of the ferroelectric polymer layer (≈50 MV m-1). These near-hysteresis-free characteristics are believed to be due to the characteristic hysteresis of the P(VDF-TrFE), resulting from its non-volatile polarization, which makes effective compensation for the current hysteresis of the SWNT-network FETs. The onset voltage for hysteresis-minimized operation is able to be tuned simply by controlling the thickness of the ferroelectric film, which opens the possibility of operating hysteresis-free devices with gate voltages down to a few volts. A simple and robust method is developed to control the characteristic current hysteresis of single-walled carbon nanotube (SWNT) network field-effect transistiors (FETs) by non-volatile ferroelectric polarization. A top-gate FET with a solution-processed SWNT network channel layer and a ferroelectric poly(vinylidene fluoride-trifluoroethylene) (P(VDF-TrFE)) gate insulator effectively suppresses the current hysteresis when the gate-voltage sweep exceeds the coercive voltage of the P(VDF-TrFE) film.
UR - http://www.scopus.com/inward/record.url?scp=84874697887&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=84874697887&partnerID=8YFLogxK
U2 - 10.1002/adfm.201201170
DO - 10.1002/adfm.201201170
M3 - Article
AN - SCOPUS:84874697887
SN - 1616-301X
VL - 23
SP - 1120
EP - 1128
JO - Advanced Functional Materials
JF - Advanced Functional Materials
IS - 9
ER -