Abstract
A simple way for high-performance planar Si-PEDOT:PSS hybrid solar cells have been demonstrated in this work. Contact-printed, hydrophobically-recovered ultrathin siloxane layer has been employed as insertion layers at interfaces in Si-PEDOT:PSS hybrid solar cells. The printing has been done at room ambient in dry state for 5– 10 min, which has led to < 0.5 nm thin siloxane layer at interfaces. The printed ultrathin siloxane plays the role of passivation layer and significantly increases the photocurrent by suppressing charge carrier recombination at interfaces, leading to > 13% cell efficiency with non-textured planar Si substrate. Interestingly, the layer has been found to be equally effective at both interfaces (‘top’ interface between Si and PEDOT:PSS, and ‘bottom’ interface between Si and bottom electrode), while other insertion layers suggested in literature works at one interface only. Furthermore, the sheet resistance of PEDOT:PSS layer, rather than resistivity or conductivity, has been found to be the relevant characteristics in the hybrid solar cells, because the carrier conduction in 2-dimension is utmost importance in such devices. The suggested method can be a valuable help for low-cost, high-performance Si-PEDOT:PSS hybrid solar cells and can expedite the commercialization of the hybrid photovoltaics in near future.
Original language | English |
---|---|
Pages (from-to) | 1-7 |
Number of pages | 7 |
Journal | Microelectronic Engineering |
Volume | 170 |
DOIs | |
Publication status | Published - 2017 Feb 25 |
Bibliographical note
Funding Information:This work was supported by the National Research Foundation Grant funded by the Korean Government (MEST) (NRF2010-C1AAA001-0029061).
Publisher Copyright:
© 2016 Elsevier B.V.
All Science Journal Classification (ASJC) codes
- Electronic, Optical and Magnetic Materials
- Atomic and Molecular Physics, and Optics
- Condensed Matter Physics
- Surfaces, Coatings and Films
- Electrical and Electronic Engineering