TY - JOUR
T1 - Construction of nano-scale cellular environments by coating a multilayer nanofilm on the surface of human induced pluripotent stem cells
AU - Han, Uiyoung
AU - Kim, Yu Jin
AU - Kim, Wijin
AU - Park, Ju Hyun
AU - Hong, Jinkee
N1 - Publisher Copyright:
© 2019 The Royal Society of Chemistry.
PY - 2019/7/28
Y1 - 2019/7/28
N2 - Interactions with peripheral environments, such as extracellular matrix (ECM) and other cells, and their balance play a crucial role in the maintenance of pluripotency and self-renewal of human pluripotent stem cells. In this study, we focused on a nano-sized artificial cellular environment that is directly attached to the cytoplasmic membrane as a facile method that can effect intercellular interactions at the single-cell level. We designed multilayered nanofilms that are self-assembled on the surface of human induced pluripotent stem cells (iPSCs), by repetitive adsorption of fibronectin and heparin or chondroitin sulfate. However, the surface modification process could also lead to the loss of cell-cell adhesion, which may result in apoptotic cell death. We investigated the proliferation and pluripotency of the iPSCs coated with the nanofilm in order to establish the suitable nanofilm structure and coating conditions. As a result, the cell viability reduced with the increase in the duration of the coating process, but the undifferentiated state and proliferation of the cells were maintained until 2 bilayers were coated. To suppress the dissociation-induced apoptosis, Y-27632, the Rho-associated kinase inhibitor (ROCKi), was added to the coating solution; this allowed the coating of up to 4 bilayers of the nanofilm onto the iPSCs. These results are expected to accelerate the pace of iPSC studies on 3-dimensional cultures and naïve pluripotency, in which the regulation of cellular interactions plays a critical role.
AB - Interactions with peripheral environments, such as extracellular matrix (ECM) and other cells, and their balance play a crucial role in the maintenance of pluripotency and self-renewal of human pluripotent stem cells. In this study, we focused on a nano-sized artificial cellular environment that is directly attached to the cytoplasmic membrane as a facile method that can effect intercellular interactions at the single-cell level. We designed multilayered nanofilms that are self-assembled on the surface of human induced pluripotent stem cells (iPSCs), by repetitive adsorption of fibronectin and heparin or chondroitin sulfate. However, the surface modification process could also lead to the loss of cell-cell adhesion, which may result in apoptotic cell death. We investigated the proliferation and pluripotency of the iPSCs coated with the nanofilm in order to establish the suitable nanofilm structure and coating conditions. As a result, the cell viability reduced with the increase in the duration of the coating process, but the undifferentiated state and proliferation of the cells were maintained until 2 bilayers were coated. To suppress the dissociation-induced apoptosis, Y-27632, the Rho-associated kinase inhibitor (ROCKi), was added to the coating solution; this allowed the coating of up to 4 bilayers of the nanofilm onto the iPSCs. These results are expected to accelerate the pace of iPSC studies on 3-dimensional cultures and naïve pluripotency, in which the regulation of cellular interactions plays a critical role.
UR - http://www.scopus.com/inward/record.url?scp=85069231495&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85069231495&partnerID=8YFLogxK
U2 - 10.1039/c9nr02375e
DO - 10.1039/c9nr02375e
M3 - Article
C2 - 31290516
AN - SCOPUS:85069231495
SN - 2040-3364
VL - 11
SP - 13541
EP - 13551
JO - Nanoscale
JF - Nanoscale
IS - 28
ER -