TY - JOUR
T1 - Computed Tomography-Derived Skeletal Muscle Radiodensity Predicts Peak Weight-Corrected Jump Power in Older Adults
T2 - The Korean Urban Rural Elderly (KURE) Study
AU - Choi, Heewon
AU - Hong, Namki
AU - Park, Narae
AU - Kim, Chang Oh
AU - Kim, Hyeon Chang
AU - Choi, Jin Young
AU - Youm, Yoosik
AU - Rhee, Yumie
N1 - Publisher Copyright:
© 2021, The Author(s), under exclusive licence to Springer Science+Business Media, LLC part of Springer Nature.
PY - 2021/6
Y1 - 2021/6
N2 - Computed tomography (CT)-derived skeletal muscle area (SMA) and skeletal muscle radiodensity (SMD) reflect distinctive quantitative and qualitative characteristics of skeletal muscles. However, data on whether CT-based muscle parameters, especially SMD, can predict muscle function is limited. In a prospective cohort, 1523 community-dwelling older adults who underwent abdominal CT scans and the countermovement two-legged jumping test on a ground reaction force platform were analyzed (mean age 74.7 years, 65.1% women). SMA and SMD were measured at third lumbar vertebra level (L3). Individuals with low jump power (peak weight-corrected jump power < 23.8 W/kg in men and < 19.0 W/kg in women using clinically validated threshold) were older; had lower SMA, SMD, and maximal grip strength values; and had lower chair rise test and timed up and go test performance than those without low jump power. SMD was positively associated with peak weight-corrected jump power (adjusted β = 0.33 and 0.23 per 1 HU increase in men and women, respectively, p < 0.001). One HU decrement in SMD was associated with 10% elevated odds of low jump power (adjusted OR [aOR] 1.10, p < 0.001) after adjusting for age, sex, height, inflammation, and insulin resistance markers, whereas the association of SMA with low jump power was attenuated (aOR 1.00, p = 0.721). SMD showed better discrimination for low jump power than SMA (AUC 0.699 vs. 0.617, p < 0.001), with additional improvement when added to SMA and conventional risk factors (AUC 0.745 to 0.773, p < 0.001). Therefore, CT-measured L3 SMD can be a sensitive surrogate marker for muscle function along with SMA in older adults, which merits further investigation.
AB - Computed tomography (CT)-derived skeletal muscle area (SMA) and skeletal muscle radiodensity (SMD) reflect distinctive quantitative and qualitative characteristics of skeletal muscles. However, data on whether CT-based muscle parameters, especially SMD, can predict muscle function is limited. In a prospective cohort, 1523 community-dwelling older adults who underwent abdominal CT scans and the countermovement two-legged jumping test on a ground reaction force platform were analyzed (mean age 74.7 years, 65.1% women). SMA and SMD were measured at third lumbar vertebra level (L3). Individuals with low jump power (peak weight-corrected jump power < 23.8 W/kg in men and < 19.0 W/kg in women using clinically validated threshold) were older; had lower SMA, SMD, and maximal grip strength values; and had lower chair rise test and timed up and go test performance than those without low jump power. SMD was positively associated with peak weight-corrected jump power (adjusted β = 0.33 and 0.23 per 1 HU increase in men and women, respectively, p < 0.001). One HU decrement in SMD was associated with 10% elevated odds of low jump power (adjusted OR [aOR] 1.10, p < 0.001) after adjusting for age, sex, height, inflammation, and insulin resistance markers, whereas the association of SMA with low jump power was attenuated (aOR 1.00, p = 0.721). SMD showed better discrimination for low jump power than SMA (AUC 0.699 vs. 0.617, p < 0.001), with additional improvement when added to SMA and conventional risk factors (AUC 0.745 to 0.773, p < 0.001). Therefore, CT-measured L3 SMD can be a sensitive surrogate marker for muscle function along with SMA in older adults, which merits further investigation.
KW - Aging
KW - Muscle density
KW - Muscle mass
KW - Muscle radiation attenuation
KW - Myosteatosis
KW - Physical performance
UR - http://www.scopus.com/inward/record.url?scp=85100707414&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85100707414&partnerID=8YFLogxK
U2 - 10.1007/s00223-021-00812-9
DO - 10.1007/s00223-021-00812-9
M3 - Article
C2 - 33566115
AN - SCOPUS:85100707414
SN - 0171-967X
VL - 108
SP - 764
EP - 774
JO - Calcified Tissue International
JF - Calcified Tissue International
IS - 6
ER -