Compound heterozygous mutations in TGFBI cause a severe phenotype of granular corneal dystrophy type 2

Ikhyun Jun, Yong Woo Ji, Seung il Choi, Bo Ram Lee, Ji Sang Min, Eung Kweon Kim

Research output: Contribution to journalArticlepeer-review

5 Citations (Scopus)


We investigated the clinical and genetic features of patients with severe phenotype of granular corneal dystrophy type 2 (GCD2) associated with compound heterozygosity in the transforming growth factor-β-induced (TGFBI) gene. Patients with severe GCD2 underwent ophthalmic examination (best-corrected visual acuity test, intraocular pressure measurement, slit-lamp examination, and slit-lamp photograph analysis) and direct Sanger sequencing of whole-TGFBI. The patient’s family was tested to determine the pedigrees. Five novel mutations (p.(His174Asp), p.(Ile247Asn), p.(Tyr88Cys), p.(Arg257Pro), and p.(Tyr468*)) and two known mutations (p.(Asn544Ser) and p.(Arg179*)) in TGFBI were identified, along with p.(Arg124His), in the patients. Trans-phase of TGFBI second mutations was confirmed by pedigree analysis. Multiple, extensive discoid granular, and increased linear deposits were observed in the probands carrying p.(Arg124His) and other nonsense mutations. Some patients who had undergone phototherapeutic keratectomy experienced rapid recurrence (p.(Ile247Asn) and p.(Asn544Ser)); however, the cornea was well-maintained in a patient who underwent deep anterior lamellar keratoplasty (p.(Ile247Asn)). Thus, compound heterozygosity of TGFBI is associated with the phenotypic variability of TGFBI corneal dystrophies, suggesting that identifying TGFBI second mutations may be vital in patients with extraordinarily severe phenotypes. Our findings indicate the necessity for a more precise observation of genotype–phenotype correlation and additional care when treating TGFBI corneal dystrophies.

Original languageEnglish
Article number6986
JournalScientific reports
Issue number1
Publication statusPublished - 2021 Dec

Bibliographical note

Publisher Copyright:
© 2021, The Author(s).

All Science Journal Classification (ASJC) codes

  • General


Dive into the research topics of 'Compound heterozygous mutations in TGFBI cause a severe phenotype of granular corneal dystrophy type 2'. Together they form a unique fingerprint.

Cite this