Abstract
Scale-invariant feature transform (SIFT) is one of the most widely used local features for computer vision in mobile devices. A mobile graphic processing unit (GPU) is often used to run computer-vision applications using SIFT features, but the performance in such a case is not powerful enough to generate SIFT features in real time. This paper proposes an efficient scheme to optimize the SIFT algorithm for a mobile GPU. It analyzes the conventional scale-space construction step in the SIFT generation, finding that reducing the size of the Gaussian filter and the scale-space image leads to a significant speedup with only a slight degradation of the quality of the features. Based on this observation, the SIFT algorithm is modified and implemented for real-time execution. Additional optimization techniques are employed for a further speedup by efficiently utilizing both the CPU and the GPU in a mobile processor. The proposed SIFT generation scheme achieves a processing speed of 28.30 frames/s for an image with a resolution of 1280 × 720 running on a Galaxy S5 LTE-A device, thereby gaining a speedup by the factors of 114.78 and 4.53 over CPU- and GPU-only implementations, respectively.
Original language | English |
---|---|
Article number | 7490389 |
Pages (from-to) | 2246-2259 |
Number of pages | 14 |
Journal | IEEE Transactions on Circuits and Systems for Video Technology |
Volume | 27 |
Issue number | 10 |
DOIs | |
Publication status | Published - 2017 Oct |
Bibliographical note
Funding Information:Manuscript received August 17, 2015; revised December 5, 2015, February 11, 2016, and April 21, 2016; accepted June 10, 2016. Date of publication June 13, 2016; date of current version October 3, 2017. This work was supported in part by the Development of Fusion Processor based on Multi-Shader GPU within the Industrial Strategic Technology Development Program funded by the Ministry Of Trade, Industry & Energy under Grant 10041664; and in part by the Ministry of Science, ICT & Future Planning within the Information Technology Research Center supervised by the Institute for Information and Communications Technology Promotion under Grant IITP-2016-H8501-16-1005. This paper was recommended by Associate Editor L. Sousa.
Publisher Copyright:
© 2017 IEEE.
All Science Journal Classification (ASJC) codes
- Media Technology
- Electrical and Electronic Engineering