Common variants in the glycerol kinase gene reduce tuberculosis drug efficacy

Michelle M. Bellerose, Seung Hun Baek, Chuan Chin Huang, Caitlin E. Moss, Eun Ik Koh, Megan K. Proulx, Clare M. Smith, Richard E. Baker, Jong Seok Lee, Seokyong Eum, Sung Jae Shin, Sang Nae Cho, Megan Murray, Christopher M. Sassetti

Research output: Contribution to journalArticlepeer-review

62 Citations (Scopus)


Despite the administration of multiple drugs that are highly effective in vitro, tuberculosis (TB) treatment requires prolonged drug administration and is confounded by the emergence of drug-resistant strains. To understand the mechanisms that limit antibiotic efficacy, we performed a comprehensive genetic study to identify Mycobacterium tuberculosis genes that alter the rate of bacterial clearance in drug-treated mice. Several functionally distinct bacterial genes were found to alter bacterial clearance, and prominent among these was the glpK gene that encodes the glycerol-3-kinase enzyme that is necessary for glycerol catabolism. Growth on glycerol generally increased the sensitivity of M. tuberculosis to antibiotics in vitro, and glpK-deficient bacteria persisted during antibiotic treatment in vivo, particularly during exposure to pyrazinamide-containing regimens. Frameshift mutations in a hypervariable homopolymeric region of the glpK gene were found to be a specific marker of multidrug resistance in clinical M. tuberculosis isolates, and these loss-offunction alleles were also enriched in extensively drug-resistant clones. These data indicate that frequently observed variation in the glpK coding sequence produces a drug-tolerant phenotype that can reduce antibiotic efficacy and may contribute to the evolution of resistance.

Original languageEnglish
Article numbere00663-19
Issue number4
Publication statusPublished - 2019 Jul 1

Bibliographical note

Publisher Copyright:
© 2019 Bellerose et al.

All Science Journal Classification (ASJC) codes

  • Microbiology
  • Virology


Dive into the research topics of 'Common variants in the glycerol kinase gene reduce tuberculosis drug efficacy'. Together they form a unique fingerprint.

Cite this