Abstract
2D crystals can serve as templates for the realization of new van der Waals (vdW) heterostructures via controlled assembly of low-dimensional functional components. Among available 2D crystals, black phosphorus (BP) is unique due to its puckered atomic surface topography, which may lead to strong epitaxial phenomena through guided vdW assembly. Here, it is demonstrated that a BP template can induce highly oriented assembly of C60 molecular crystals. Transmission electron microscopy and theoretical analysis of the C60/BP vdW heterostructure clearly confirm that the BP template results in oriented C60 assembly with higher-order commensurism. Lateral and vertical devices with C60/BP junctions are fabricated via a lithography-free clean process, which allows one to investigate the ideal electrical properties of pristine C60/BP junctions. Effective tuning of the C60/BP junction barrier from 0.2 to 0.5 eV and maximum on-current density higher than 104 mA cm−2 are achieved with graphite/C60/BP vertical vdW transistors. Due to the formation of high-quality C60 film and the semitransparent graphite top-electrode, the vertical transistors show high photoresponsivities up to ≈100 A W−1 as well as a fast response time under visible light illumination.
Original language | English |
---|---|
Article number | 2105916 |
Journal | Small |
Volume | 18 |
Issue number | 10 |
DOIs | |
Publication status | Published - 2022 Mar 10 |
Bibliographical note
Funding Information:This work was mainly supported by the Basic Science Research Program at the National Research Foundation of Korea (NRF‐2017R1A5A1014862 and NRF‐2019R1C1C1003643), by the Yonsei Signature Research Cluster Program of 2021 (2021‐22‐0004), and by the Institute for Basic Science (IBS‐R026‐D1). Y.L. received support from the Basic Science Research Program at the National Research Foundation of Korea which was funded by the Ministry of Education (NRF‐2020R1A6A3A13060549) and Ministry of Science and ICT (NRF‐2021R1C1C2006785).
Publisher Copyright:
© 2022 Wiley-VCH GmbH.
All Science Journal Classification (ASJC) codes
- Biotechnology
- Biomaterials
- Chemistry(all)
- Materials Science(all)