Abstract
Thermodynamic equilibrium analysis of the combined steam and carbon dioxide reforming of methane (CSCRM) and side reactions was performed using total Gibbs free energy minimization. The effects of (CO2 + H2O)/CH4 ratio (0.9-2.9), CO2:H2O ratio (3:1-1:3), and temperature (500-1000 °C) on the equilibrium conversions, yields, coke yield, and H2/CO ratio were investigated. A (CO2 + H2O)/CH4 ratio greater than 1.2, a CO2:H2O ratio of 1:2.1, and a temperature of at least 850 °C are preferable reaction conditions for the synthesis gas preparation in the gas to liquid process. Simulated conditions were applied to the CSCRM reaction and the experimental data were compared with the thermodynamic equilibrium results. The thermodynamic equilibrium results were mostly consistent with the experimental data, but the reverse water gas shift reaction rapidly occurred in the real chemical reaction and under excess oxidizing agent conditions. In addition, a long-term stability test (under simulated conditions) showed that the equilibrium conversion was maintained for 500 h and that the coke formation on the used catalyst was not observed.
Original language | English |
---|---|
Pages (from-to) | 80-91 |
Number of pages | 12 |
Journal | Applied Energy |
Volume | 173 |
DOIs | |
Publication status | Published - 2016 Jul 1 |
Bibliographical note
Funding Information:The authors gratefully acknowledge financial support from the Samsung Advanced Institute of Technology (SAIT), Samsung Electronics Co. Ltd. This research was supported by Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Science, ICT and Future Planning (2013R1A1A1A05007370).
Publisher Copyright:
© 2016 Published by Elsevier Ltd.
All Science Journal Classification (ASJC) codes
- Building and Construction
- Mechanical Engineering
- Energy(all)
- Management, Monitoring, Policy and Law