Clinical application of in-room positron emission tomography for in vivo treatment monitoring in proton radiation therapy

Chul Hee Min, Xuping Zhu, Brian A. Winey, Kira Grogg, Mauro Testa, Georges El Fakhri, Thomas R. Bortfeld, Harald Paganetti, Helen A. Shih

Research output: Contribution to journalArticlepeer-review

69 Citations (Scopus)

Abstract

Purpose: The purpose of this study is to evaluate the potential of using in-room positron emission tomography (PET) for treatment verification in proton therapy and for deriving suitable PET scan times. Methods and Materials: Nine patients undergoing passive scattering proton therapy underwent scanning immediately after treatment with an in-room PET scanner. The scanner was positioned next to the treatment head after treatment. The Monte Carlo (MC) method was used to reproduce PET activities for each patient. To assess the proton beam range uncertainty, we designed a novel concept in which the measured PET activity surface distal to the target at the end of range was compared with MC predictions. The repositioning of patients for the PET scan took, on average, approximately 2 minutes. The PET images were reconstructed considering varying scan times to test the scan time dependency of the method. Results: The measured PET images show overall good spatial correlations with MC predictions. Some discrepancies could be attributed to uncertainties in the local elemental composition and biological washout. For 8 patients treated with a single field, the average range differences between PET measurements and computed tomography (CT) image-based MC results were <5 mm (<3 mm for 6 of 8 patients) and root-mean-square deviations were 4 to 11 mm with PET-CT image co-registration errors of approximately 2 mm. Our results also show that a short-length PET scan of 5 minutes can yield results similar to those of a 20-minute PET scan. Conclusions: Our first clinical trials in 9 patients using an in-room PET system demonstrated its potential for in vivo treatment monitoring in proton therapy. For a quantitative range prediction with arbitrary shape of target volume, we suggest using the distal PET activity surface.

Original languageEnglish
Pages (from-to)183-189
Number of pages7
JournalInternational Journal of Radiation Oncology Biology Physics
Volume86
Issue number1
DOIs
Publication statusPublished - 2013 May 1

Bibliographical note

Funding Information:
This work was supported by grants P01CA21239 “Proton Therapy Research” and R21CA153455 (Principal Investigator [PI]: G. El Fakhri) from the National Cancer Institute , and R21EB12823 (PI: G. El Fakhri) from the National Institute of Biomedical Imaging and Bioengineering .

All Science Journal Classification (ASJC) codes

  • Radiation
  • Oncology
  • Radiology Nuclear Medicine and imaging
  • Cancer Research

Fingerprint

Dive into the research topics of 'Clinical application of in-room positron emission tomography for in vivo treatment monitoring in proton radiation therapy'. Together they form a unique fingerprint.

Cite this