Classical-to-quantum convolutional neural network transfer learning

Research output: Contribution to journalArticlepeer-review

21 Citations (Scopus)

Abstract

Machine learning using quantum convolutional neural networks (QCNNs) has demonstrated success in both quantum and classical data classification. In previous studies, QCNNs attained a higher classification accuracy than their classical counterparts under the same training conditions in the few-parameter regime. However, the general performance of large-scale quantum models is difficult to examine because of the limited size of quantum circuits, which can be reliably implemented in the near future. We propose transfer learning as an effective strategy for utilizing small QCNNs in the noisy intermediate-scale quantum era to the full extent. In the classical-to-quantum transfer learning framework, a QCNN can solve complex classification problems without requiring a large-scale quantum circuit by utilizing a pre-trained classical convolutional neural network (CNN). We perform numerical simulations of QCNN models with various sets of quantum convolution and pooling operations for MNIST data classification under transfer learning, in which a classical CNN is trained with Fashion-MNIST data. The results show that transfer learning from classical to quantum CNN performs considerably better than purely classical transfer learning models under similar training conditions.

Original languageEnglish
Article number126643
JournalNeurocomputing
Volume555
DOIs
Publication statusPublished - 2023 Oct 28

Bibliographical note

Publisher Copyright:
© 2023 Elsevier B.V.

All Science Journal Classification (ASJC) codes

  • Computer Science Applications
  • Cognitive Neuroscience
  • Artificial Intelligence

Fingerprint

Dive into the research topics of 'Classical-to-quantum convolutional neural network transfer learning'. Together they form a unique fingerprint.

Cite this