Characterization of Maf1 in Arabidopsis: function under stress conditions and regulation by the TOR signaling pathway

Chang Sook Ahn, Du Hwa Lee, Hyun Sook Pai

Research output: Contribution to journalArticlepeer-review

22 Citations (Scopus)


Main conclusion: Maf1 repressor activity is critical for plant survival during environmental stresses, and is regulated by its phosphorylation/dephosphorylation through the activity of TOR and PP4/PP2A phosphatases. Maf1 is a global repressor of RNA polymerase III (Pol III), and is conserved in eukaryotes. Pol III synthesizes small RNAs, 5S rRNA, and tRNAs that are essential for protein translation and cell growth. Maf1 is a phosphoprotein and dephosphorylation of Maf1 promotes its repressor activity in yeast and mammals. Plant Maf1 was identified in citrus plants as a canker elicitor-binding protein, and citrus Maf1 represses cell growth associated with canker development. However, functions of plant Maf1 under diverse stress conditions and its regulation by the target of rapamycin (TOR) signaling components are poorly understood. In this study, the Arabidopsis maf1 mutants were more susceptible to diverse stresses and treatment with the TOR inhibitor Torin-1 than wild-type plants. The maf1 mutants expressed higher levels of Maf1 target RNAs, including 5S rRNA and pre-tRNAs in leaf cells, supporting Pol III repressor activity of Arabidopsis Maf1. Cellular stresses and Torin-1 treatment induced dephosphorylation of Maf1, suggesting Maf1 activation under diverse stress conditions. TOR silencing also stimulated Maf1 dephosphorylation, while silencing of catalytic subunit genes of PP4 and PP2A repressed it. Thus, TOR kinase and PP4/PP2A phosphatases appeared to oppositely modulate the Maf1 phosphorylation status. TOR silencing decreased the abundance of the target RNAs, while silencing of the PP4 and PP2A subunit genes increased it, supporting the positive correlation between Maf1 dephosphorylation and its repressor activity. Taken together, these results suggest that repressor activity of Maf1, regulated by the TOR signaling pathway, is critical for plant cell survival during environmental stresses.

Original languageEnglish
Pages (from-to)527-542
Number of pages16
Issue number2
Publication statusPublished - 2019 Feb 8

Bibliographical note

Publisher Copyright:
© 2018, Springer-Verlag GmbH Germany, part of Springer Nature.

All Science Journal Classification (ASJC) codes

  • Genetics
  • Plant Science


Dive into the research topics of 'Characterization of Maf1 in Arabidopsis: function under stress conditions and regulation by the TOR signaling pathway'. Together they form a unique fingerprint.

Cite this