Ca2+-activated mitochondrial biogenesis and functions improve stem cell fate in Rg3-treated human mesenchymal stem cells

Taeui Hong, Moon Young Kim, Dat Da Ly, Su Jung Park, Young Woo Eom, Kyu Sang Park, Soon Koo Baik

Research output: Contribution to journalArticlepeer-review

11 Citations (Scopus)


Although mitochondrial functions are essential for cell survival, their critical roles in stem cell fate, including proliferation, differentiation, and senescence, remain elusive. Ginsenoside Rg3 exhibits various biological activities and reportedly increases mitochondrial biogenesis and respiration. Herein, we observed that Rg3 increased proliferation and suppressed senescence of human bone marrow-derived mesenchymal stem cells. Osteogenic, but not adipogenic, differentiation was facilitated by Rg3 treatment. Rg3 suppressed reactive oxygen species production and upregulated mitochondrial biogenesis and antioxidant enzymes, including superoxide dismutase. Consistently, Rg3 strongly augmented basal and ATP synthesis-linked respiration with high spare respiratory capacity. Rg3 treatment elevated cytosolic Ca2+ concentration contributing to mitochondrial activation. Reduction of intracellular or extracellular Ca2+ levels strongly inhibited Rg3-induced activation of mitochondrial respiration and biogenesis. Taken together, Rg3 enhances capabilities of mitochondrial and antioxidant functions mainly through a Ca2+-dependent pathway, which improves the proliferation and differentiation potentials and prevents the senescence of human mesenchymal stem cells.

Original languageEnglish
Article number467
JournalStem Cell Research and Therapy
Issue number1
Publication statusPublished - 2020 Dec 1

Bibliographical note

Publisher Copyright:
© 2020, The Author(s).

All Science Journal Classification (ASJC) codes

  • Medicine (miscellaneous)
  • Molecular Medicine
  • Biochemistry, Genetics and Molecular Biology (miscellaneous)
  • Cell Biology


Dive into the research topics of 'Ca2+-activated mitochondrial biogenesis and functions improve stem cell fate in Rg3-treated human mesenchymal stem cells'. Together they form a unique fingerprint.

Cite this