Carbon nanotube-epoxy composites for electrochemical sensing

Martin Pumera, Arben Merkoçi, Salvador Alegret

Research output: Contribution to journalArticlepeer-review

67 Citations (Scopus)

Abstract

Rigid and conductive carbon nanotube-epoxy composite (CNTEC) electrodes were constructed from two kinds of multiwall carbon nanotubes differing in the length (0.5-2 and 0.5-200 μm) mixed with epoxy resin. The electrochemical behavior of CNTEC electrodes was characterized by using cyclic voltammetry of ferricyanide, NADH and hydrogen peroxide. The behavior of CNTEC electrodes prepared with different percentages of CNT has been compared with that of graphite-epoxy composite (GEC) electrode. It was found that long-carbon nanotube (0.5-200 μm) based epoxy composite electrodes show strong electrocatalytic activity towards NADH and hydrogen peroxide while short-carbon nanotube (0.5-2 μm) based epoxy composites show similar oxidation potential as graphite-epoxy composite electrode for the both NADH and H 2O 2. In all cases, CNTEC electrodes provide better reversibility, peak shape, sensitivity and stability compared with GEC electrode. The obtained experimental results demonstrate remarkable electrochemical and mechanical advantages of carbon nanotube composites compared to graphite composites for sensor applications.

Original languageEnglish
Pages (from-to)617-622
Number of pages6
JournalSensors and Actuators, B: Chemical
Volume113
Issue number2
DOIs
Publication statusPublished - 2006 Feb 27

Bibliographical note

Funding Information:
This work was financially supported by (1) Ministry of Education and Culture (MEC) of Spain (Projects BIO2004-02776, MAT2004-05164 and the grant MEC 2003-022 given to Dr. M. Pumera,); (2) Spanish foundation Ramón Areces (project ‘Bionanosensores’); (3) “Ramón y Cajal” program of MEC (Spain) that supports Dr. A. Merkoçi. Authors acknowledge the efficient technical assistance of Mr. Francesc Bohils for SEM images.

All Science Journal Classification (ASJC) codes

  • Electronic, Optical and Magnetic Materials
  • Instrumentation
  • Condensed Matter Physics
  • Surfaces, Coatings and Films
  • Metals and Alloys
  • Electrical and Electronic Engineering
  • Materials Chemistry

Fingerprint

Dive into the research topics of 'Carbon nanotube-epoxy composites for electrochemical sensing'. Together they form a unique fingerprint.

Cite this