Abstract
Carbon monoxide (CO), derived by the enzymatic reaction of heme oxygenase (HO), is a cellular regulator of energy metabolism and cytoprotection; however, its underlying mechanism has not been clearly elucidated. Astrocytes pre-exposed to the CO-releasing compound CORM-2 increased mitochondrial biogenesis, mitochondrial electron transport components (cytochrome c, Cyt c; cytochrome c oxidase subunit 2, COX2), and ATP synthesis. The increased mitochondrial function was correlated with activation of AMP-activated protein kinase α and upregulation of HO-1, peroxisome proliferators-activated receptor γ-coactivator-1α (PGC-1α), and estrogen-related receptor α (ERRα). These events elicited by CORM-2 were suppressed by Ca2+ chelators, a HO inhibitor, and an L-type Ca2+ channel blocker, but not other Ca2+ channel inhibitors. Among the HO byproducts, combined CORM-2 and bilirubin treatment effectively increased PGC-1α, Cyt c and COX2 expression, mitochondrial biogenesis, and ATP synthesis, and these increases were blocked by Ca2+ chelators. Moreover, cerebral ischemia significantly increased HO-1, PGC-1α, and ERRα levels, subsequently increasing Cyt c and COX2 expression, in wild-type mice, compared with HO-1+/− mice. These results suggest that HO-1-derived CO enhances mitochondrial biogenesis in astrocytes by activating L-type Ca2+ channel-mediated PGC-1α/ERRα axis, leading to maintenance of astrocyte function and neuroprotection/recovery against damage of brain function.
Original language | English |
---|---|
Pages (from-to) | 297-304 |
Number of pages | 8 |
Journal | Biochemical and Biophysical Research Communications |
Volume | 479 |
Issue number | 2 |
DOIs | |
Publication status | Published - 2016 Oct 14 |
Bibliographical note
Funding Information:This work was supported by the National Research Foundation of Korea (NRF) Grant funded by the Korea Government (MSIP) ( 2013M3A9B6046563 and 2016M3A9B6903103 ).
Publisher Copyright:
© 2016 Elsevier Inc.
All Science Journal Classification (ASJC) codes
- Biophysics
- Biochemistry
- Molecular Biology
- Cell Biology