Carbon electrode obtained via pyrolysis of plasma-deposited parylene-C for electrochemical immunoassays

Zhiquan Song, Jun Hee Park, Hong Rae Kim, Ga Yeon Lee, Min Jung Kang, Moo Hwan Kim, Jae Chul Pyun

Research output: Contribution to journalArticlepeer-review

3 Citations (Scopus)


In this study, parylene-C films from plasma deposition as well as thermal deposition were pyrolyzed to prepare a carbon electrode for application in electrochemical immunoassays. Plasma deposition could prepare parylene-C in a faster deposition rate and more precise control over the thickness in comparison with the conventional thermal deposition. To analyze the influence of the deposition method, the crystal and electronic structures of the pyrolyzed parylene-C films obtained via both deposition methods were compared using Fourier transform infrared spectroscopy, X-ray photoelectron spectroscopy, and Raman spectroscopy. For application as a carbon electrode in immunoassays, the electrochemical properties of the pyrolyzed carbon films from two both deposition methods were analyzed, including the double layer capacitance (2.10 μF cm−2 for plasma deposition and 2.20 μF cm−2 for thermal deposition), the apparent electron transfer rate (approximately 1.1 × 10−3 cm s−1 for both methods), and the electrochemical window (approximately −1.0 ∼ 2.1 V for both methods). Finally, the applicability of the pyrolyzed carbon electrode from parylene-C was demonstrated for the diagnosis of human hepatitis-C using various amperometric methods, such as cyclic voltammetry, chronoamperometry, square-wave voltammetry and differential pulse voltammetry.

Original languageEnglish
Pages (from-to)3783-3794
Number of pages12
Issue number16
Publication statusPublished - 2022 Jul 19

Bibliographical note

Funding Information:
This work was supported by the National Research Foundation of Korea [NRF-2020R1A2B5B01002187, NRF-2020R1A5A101913111, and NRF-2021R1A2C209370611].

Publisher Copyright:
© 2022 The Royal Society of Chemistry.

All Science Journal Classification (ASJC) codes

  • Analytical Chemistry
  • Biochemistry
  • Environmental Chemistry
  • Spectroscopy
  • Electrochemistry


Dive into the research topics of 'Carbon electrode obtained via pyrolysis of plasma-deposited parylene-C for electrochemical immunoassays'. Together they form a unique fingerprint.

Cite this