Abstract
The actuation of micro/nanomachines by means of a magnetic field is a promising fuel-free way to transport cargo in microscale dimensions. This type of movement has been extensively studied for a variety of micro/nanomachine designs, and a special magnetic field configuration results in a near-surface walking. We developed "walking"micromachines which transversally move in a magnetic field, and we used them as microrobotic scalpels to enter and exit an individual cancer cell and cut a small cellular fragment. In these microscalpels, the center of mass lies approximately in the middle of their length. The microrobotic scalpels show good propulsion efficiency and high step-out frequencies of the magnetic field. Au/Ag/Ni microrobotic scalpels controlled by a transversal rotating magnetic field can enter the cytoplasm of cancer cells and also are able to remove a piece of the cytosol while leaving the cytoplasmic membrane intact in a microsurgery-like manner. We believe that this concept can be further developed for potential biological or medical applications.
Original language | English |
---|---|
Pages (from-to) | 8247-8256 |
Number of pages | 10 |
Journal | ACS Nano |
Volume | 14 |
Issue number | 7 |
DOIs | |
Publication status | Published - 2020 Jul 28 |
Bibliographical note
Funding Information:This work was supported by the project Advanced Functional Nanorobots (reg. no. CZ.02.1.01/0.0/0.0/15_003/0000444 financed by the EFRR).
Publisher Copyright:
Copyright © 2020 American Chemical Society.
All Science Journal Classification (ASJC) codes
- Materials Science(all)
- Engineering(all)
- Physics and Astronomy(all)