Can Large Language Models be Good Emotional Supporter? Mitigating Preference Bias on Emotional Support Conversation

Dongjin Kang, Sunghwan Kim, Taeyoon Kwon, Seungjun Moon, Hyunsouk Cho, Youngjae Yu, Dongha Lee, Jinyoung Yeo

Research output: Chapter in Book/Report/Conference proceedingConference contribution

3 Citations (Scopus)

Abstract

Emotional Support Conversation (ESC) is a task aimed at alleviating individuals' emotional distress through daily conversation. Given its inherent complexity and non-intuitive nature, ESConv dataset incorporates support strategies to facilitate the generation of appropriate responses. Recently, despite the remarkable conversational ability of large language models (LLMs), previous studies have suggested that they often struggle with providing useful emotional support. Hence, this work initially analyzes the results of LLMs on ESConv, revealing challenges in selecting the correct strategy and a notable preference for a specific strategy. Motivated by these, we explore the impact of the inherent preference in LLMs on providing emotional support, and consequently, we observe that exhibiting high preference for specific strategies hinders effective emotional support, aggravating its robustness in predicting the appropriate strategy. Moreover, we conduct a methodological study to offer insights into the necessary approaches for LLMs to serve as proficient emotional supporters. Our findings emphasize that (1) low preference for specific strategies hinders the progress of emotional support, (2) external assistance helps reduce preference bias, and (3) existing LLMs alone cannot become good emotional supporters. These insights suggest promising avenues for future research to enhance the emotional intelligence of LLMs.

Original languageEnglish
Title of host publicationLong Papers
EditorsLun-Wei Ku, Andre F. T. Martins, Vivek Srikumar
PublisherAssociation for Computational Linguistics (ACL)
Pages15232-15261
Number of pages30
ISBN (Electronic)9798891760943
DOIs
Publication statusPublished - 2024
Event62nd Annual Meeting of the Association for Computational Linguistics, ACL 2024 - Bangkok, Thailand
Duration: 2024 Aug 112024 Aug 16

Publication series

NameProceedings of the Annual Meeting of the Association for Computational Linguistics
Volume1
ISSN (Print)0736-587X

Conference

Conference62nd Annual Meeting of the Association for Computational Linguistics, ACL 2024
Country/TerritoryThailand
CityBangkok
Period24/8/1124/8/16

Bibliographical note

Publisher Copyright:
© 2024 Association for Computational Linguistics.

All Science Journal Classification (ASJC) codes

  • Computer Science Applications
  • Linguistics and Language
  • Language and Linguistics

Fingerprint

Dive into the research topics of 'Can Large Language Models be Good Emotional Supporter? Mitigating Preference Bias on Emotional Support Conversation'. Together they form a unique fingerprint.

Cite this