Boosting ion dynamics through superwettable leaf-like film based on porous g-C3N4 nanosheets for ionogel supercapacitors

Minjie Shi, Cheng Yang, Chao Yan, Jintian Jiang, Yongchao Liu, Zhenyu Sun, Weilong Shi, Gang Jian, Zhanhu Guo, Jong Hyun Ahn

Research output: Contribution to journalArticlepeer-review

40 Citations (Scopus)

Abstract

Ionic liquid (IL) electrolytes have enormous potential for the development of high energy density supercapacitors (SCs) owing to their wide potential windows, but ILs are plagued by sluggish ionic diffusion due to their high viscosity and large ion size. Exploiting superwettable electrodes possessing high compatibility with IL electrolytes remains challenging. Inspired by the biological characteristics observed in nature, a unique film electrode with a Monstera leaf-like nanostructure is synthesized and used to overcome the aforementioned bottleneck. Similar to the pores in Monstera leaves that allow the permeation of air and water vapor, the film electrode is based on porous g-C3N4 nanosheets (~1 nm thick) as ion-accessible “highway” channels, allowing ultrafast diffusion of IL ions. The film exhibits a high diffusion coefficient (3.68 × 10−10 m2 s−1), low activation energy (0.078 mJ mol−1) and extraordinary wettability in the IL electrolyte, indicating its superior IL ion dynamics. As a proof of concept, flexible ionogel SCs (FISCs) with tailorability and editability are fabricated, which exhibit a high energy density (10.5 mWh cm−3), high-power density, remarkable rate capability, and long-term durability, outperforming previously reported FISCs. Importantly, these FISCs can be effectively charged by harvesting sustainable power sources, particularly the rarely studied wind power, for practical applications.

Original languageEnglish
Article number61
JournalNPG Asia Materials
Volume11
Issue number1
DOIs
Publication statusPublished - 2019 Dec 1

Bibliographical note

Funding Information:
Minjie Shi and Cheng Yang contributed equally to this work. We appreciate the fruitful discussions with Prof. François Béguin at Poznan University of Technology and Dr. Qiang Gao at Oak Ridge National Laboratory. We greatly acknowledge the funding for this project through the National Natural Science Foundations of China (No. 51873083), the Opening Project of State Key Laboratory of Polymer Materials Engineering (Sichuan University) (No. sklpme2018-4-27), the Six Talent Peaks Project in Jiangsu Province (No. 2015-XCL-028), the Postgraduate Research & Practice Innovation Program of Jiangsu Province (KYCX17_1831, SJCX18_0759), the Key University Science Research Project of Jiangsu Province (18KJA130001), and the Beijing Natural Science Foundation (No. 2192039). J.-H.A. acknowledges support from the National Research Foundation of Korea (NRF-2015R1A3A2066337). Z.S. acknowledges support from National Natural Science Foundation of China (NSFC, No. 21972010) and Beijing Natural Science Foundation (No. 2192039).

Publisher Copyright:
© 2019, The Author(s).

All Science Journal Classification (ASJC) codes

  • Modelling and Simulation
  • Materials Science(all)
  • Condensed Matter Physics

Fingerprint

Dive into the research topics of 'Boosting ion dynamics through superwettable leaf-like film based on porous g-C3N4 nanosheets for ionogel supercapacitors'. Together they form a unique fingerprint.

Cite this