Blunt ocean dynamical thermostat in response of tropical eastern Pacific SST to global warming

Soon Il An, Seul Hee Im

Research output: Contribution to journalArticlepeer-review

6 Citations (Scopus)


Using an intermediate ocean–atmosphere coupled model (ICM) for the tropical Pacific, we investigated the role of the ocean dynamical thermostat (ODT) in regulating the tropical eastern Pacific sea surface temperature (SST) under global warming conditions. The external, uniformly distributed surface heating results in the cooling of the tropical eastern Pacific “cold tongue,” and the amplitude of the cooling increases as more heat is added but not simply linearly. Furthermore, an upper bound for the influence of the equatorially symmetric surface heating on the cold tongue cooling exists. The additional heating beyond the upper bound does not cool the cold tongue in a systematic manner. The heat budget analysis suggests that the zonal advection is the primary factor that contributes to such nonlinear SST response. The radiative heating due to the greenhouse effect (hereafter, RHG) that is obtained from the multi-model ensemble of the Climate Model Intercomparison Project Phase III (CMIP3) was externally given to ICM. The RHG obtained from the twentieth century simulation intensified the cold tongue cooling and the subtropical warming, which were further intensified by the RHG from the doubled CO2 concentration simulation. However, the cold tongue cooling was significantly reduced and the negative SST response region was shrunken toward the equator by the RHG from the quadrupled CO2 concentration simulation, while the subtropical warming increased further. A systematic RHG forced experiment having the same spatial pattern of RHG from doubled CO2 concentration simulation with different amplitude of forcing revealed that the ocean dynamical response to global warming tended to enhance the cooling in the tropical eastern Pacific by virtue of meridional advection and upwelling; however, these cooling effects could not fully compensate a given RHG warming as the external forcing becomes larger. Moreover, the feedback by the zonal thermal advection actually exerted the warming over the equatorial region. Therefore, as the global warming is intensified, the cooling over the eastern tropical Pacific by ODT and the negative SST response area are reduced.

Original languageEnglish
Pages (from-to)173-183
Number of pages11
JournalTheoretical and Applied Climatology
Issue number1-2
Publication statusPublished - 2014 Sept 1

Bibliographical note

Funding Information:
We would like to thank two supportive reviewers, and J. Choi who helped us implement the intermediate coupled model. This work was supported by the National Research Foundation of Korea Grant funded by the Korean Government (NRF-2009-C1AAA001-2009-0093042).

Publisher Copyright:
© 2013, Springer-Verlag Wien.

All Science Journal Classification (ASJC) codes

  • Atmospheric Science


Dive into the research topics of 'Blunt ocean dynamical thermostat in response of tropical eastern Pacific SST to global warming'. Together they form a unique fingerprint.

Cite this