Blind image deblurring using dark channel prior

Jinshan Pan, Deqing Sun, Hanspeter Pfister, Ming Hsuan Yang

Research output: Chapter in Book/Report/Conference proceedingConference contribution

609 Citations (Scopus)

Abstract

We present a simple and effective blind image deblurring method based on the dark channel prior. Our work is inspired by the interesting observation that the dark channel of blurred images is less sparse. While most image patches in the clean image contain some dark pixels, these pixels are not dark when averaged with neighboring highintensity pixels during the blur process. This change in the sparsity of the dark channel is an inherent property of the blur process, which we both prove mathematically and validate using training data. Therefore, enforcing the sparsity of the dark channel helps blind deblurring on various scenarios, including natural, face, text, and low-illumination images. However, sparsity of the dark channel introduces a non-convex non-linear optimization problem. We introduce a linear approximation of the min operator to compute the dark channel. Our look-up-table-based method converges fast in practice and can be directly extended to non-uniform deblurring. Extensive experiments show that our method achieves state-of-the-art results on deblurring natural images and compares favorably methods that are well-engineered for specific scenarios.

Original languageEnglish
Title of host publicationProceedings - 29th IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2016
PublisherIEEE Computer Society
Pages1628-1636
Number of pages9
ISBN (Electronic)9781467388504
DOIs
Publication statusPublished - 2016 Dec 9
Event29th IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2016 - Las Vegas, United States
Duration: 2016 Jun 262016 Jul 1

Publication series

NameProceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition
Volume2016-December
ISSN (Print)1063-6919

Conference

Conference29th IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2016
Country/TerritoryUnited States
CityLas Vegas
Period16/6/2616/7/1

Bibliographical note

Publisher Copyright:
© 2016 IEEE.

All Science Journal Classification (ASJC) codes

  • Software
  • Computer Vision and Pattern Recognition

Fingerprint

Dive into the research topics of 'Blind image deblurring using dark channel prior'. Together they form a unique fingerprint.

Cite this