Abstract
With the surge of large-scale pre-trained models (PTMs), fine-tuning these models to numerous downstream tasks becomes a crucial problem. Consequently, parameter efficient transfer learning (PETL) of large models has grasped huge attention. While recent PETL methods showcase impressive performance, they rely on optimistic assumptions: 1) the entire parameter set of a PTM is available, and 2) a sufficiently large memory capacity for the fine-tuning is equipped. However, in most real-world applications, PTMs are served as a black-box API or proprietary software without explicit parameter accessibility. Besides, it is hard to meet a large memory requirement for modern PTMs. In this work, we propose black-box visual prompting (Black-VIP), which efficiently adapts the PTMs without knowledge about model architectures and parameters. Black-VIP has two components; 1) Coordinator and 2) simultaneous perturbation stochastic approximation with gradient correction (SPSA-GC). The Coordinator designs inputdependent image-shaped visual prompts, which improves few-shot adaptation and robustness on distribution/location shift. SPSA-GC efficiently estimates the gradient of a target model to update Coordinator. Extensive experiments on 16 datasets demonstrate that BlackVIP enables robust adaptation to diverse domains without accessing PTMs' parameters, with minimal memory requirements. Code: https://github.com/changdaeoh/BlackVIP
Original language | English |
---|---|
Title of host publication | Proceedings - 2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR 2023 |
Publisher | IEEE Computer Society |
Pages | 24224-24235 |
Number of pages | 12 |
ISBN (Electronic) | 9798350301298 |
DOIs | |
Publication status | Published - 2023 |
Event | 2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR 2023 - Vancouver, Canada Duration: 2023 Jun 18 → 2023 Jun 22 |
Publication series
Name | Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition |
---|---|
Volume | 2023-June |
ISSN (Print) | 1063-6919 |
Conference
Conference | 2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR 2023 |
---|---|
Country/Territory | Canada |
City | Vancouver |
Period | 23/6/18 → 23/6/22 |
Bibliographical note
Publisher Copyright:© 2023 IEEE.
All Science Journal Classification (ASJC) codes
- Software
- Computer Vision and Pattern Recognition