Black phosphorene as a hole extraction layer boosting solar water splitting of oxygen evolution catalysts

Kan Zhang, Bingjun Jin, Cheolwoo Park, Yoonjun Cho, Xiufeng Song, Xinjian Shi, Shengli Zhang, Wooyul Kim, Haibo Zeng, Jong Hyeok Park

Research output: Contribution to journalArticlepeer-review

255 Citations (Scopus)


As the development of oxygen evolution co-catalysts (OECs) is being actively undertaken, the tailored integration of those OECs with photoanodes is expected to be a plausible avenue for achieving highly efficient solar-assisted water splitting. Here, we demonstrate that a black phosphorene (BP) layer, inserted between the OEC and BiVO 4 can improve the photoelectrochemical performance of pre-optimized OEC/BiVO 4 (OEC: NiOOH, MnO x, and CoOOH) systems by 1.2∼1.6-fold, while the OEC overlayer, in turn, can suppress BP self-oxidation to achieve a high durability. A photocurrent density of 4.48 mA·cm −2 at 1.23 V vs reversible hydrogen electrode (RHE) is achieved by the NiOOH/BP/BiVO 4 photoanode. It is found that the intrinsic p-type BP can boost hole extraction from BiVO 4 and prolong holes trapping lifetime on BiVO 4 surface. This work sheds light on the design of BP-based devices for application in solar to fuel conversion, and also suggests a promising nexus between semiconductor and electrocatalyst.

Original languageEnglish
Article number2001
JournalNature communications
Issue number1
Publication statusPublished - 2019 Dec 1

Bibliographical note

Publisher Copyright:
© 2019, The Author(s).

All Science Journal Classification (ASJC) codes

  • General Chemistry
  • General Biochemistry,Genetics and Molecular Biology
  • General Physics and Astronomy


Dive into the research topics of 'Black phosphorene as a hole extraction layer boosting solar water splitting of oxygen evolution catalysts'. Together they form a unique fingerprint.

Cite this