TY - JOUR
T1 - Biotribological investigation of a multi-tube foot for traction generation in a medical microrobot
AU - Kim, Y. T.
AU - Kim, D. E.
PY - 2009
Y1 - 2009
N2 - In recent years, efforts to develop microrobots for medical applications have been expanding. One of the key design issues in such microrobots is to attain adequate frictional interaction between the robotic foot and the organ tissue. In particular, it is important to generate the necessary frictional force without damaging the tissue. In this work, a design for the robotic foot was proposed on the basis of the frictional behaviour of a tube structure. Fundamental experiments were initially performed to understand the biotribological behaviour of the tube and rod structures. The design was then modified to a multi-tube structure to achieve adequate frictional behaviour. Biotribological investigation of a multi-tube foot in contact with a small intestine specimen of a pig was conducted using a pin-on-reciprocator type biotribotester. It was found that there is an optimum number and arrangement of the tubes for generating high frictional force. Experimental results showed that a nine-tube foot had the highest initial friction coefficient of about 1.5. The major frictional mechanism was determined to be interlocking between the tubes and the surface structures of the intestine specimen. The results of this work will aid the optimum design of frictional surface for medical microrobots and other biological devices.
AB - In recent years, efforts to develop microrobots for medical applications have been expanding. One of the key design issues in such microrobots is to attain adequate frictional interaction between the robotic foot and the organ tissue. In particular, it is important to generate the necessary frictional force without damaging the tissue. In this work, a design for the robotic foot was proposed on the basis of the frictional behaviour of a tube structure. Fundamental experiments were initially performed to understand the biotribological behaviour of the tube and rod structures. The design was then modified to a multi-tube structure to achieve adequate frictional behaviour. Biotribological investigation of a multi-tube foot in contact with a small intestine specimen of a pig was conducted using a pin-on-reciprocator type biotribotester. It was found that there is an optimum number and arrangement of the tubes for generating high frictional force. Experimental results showed that a nine-tube foot had the highest initial friction coefficient of about 1.5. The major frictional mechanism was determined to be interlocking between the tubes and the surface structures of the intestine specimen. The results of this work will aid the optimum design of frictional surface for medical microrobots and other biological devices.
UR - http://www.scopus.com/inward/record.url?scp=70349316597&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=70349316597&partnerID=8YFLogxK
U2 - 10.1243/09544119JEIM595
DO - 10.1243/09544119JEIM595
M3 - Article
C2 - 19743634
AN - SCOPUS:70349316597
SN - 0954-4119
VL - 223
SP - 677
EP - 686
JO - Proceedings of the Institution of Mechanical Engineers, Part H: Journal of Engineering in Medicine
JF - Proceedings of the Institution of Mechanical Engineers, Part H: Journal of Engineering in Medicine
IS - 6
ER -