Abstract
Sodium ion batteries are an emerging candidate to replace lithium ion batteries in large-scale electrical energy storage systems due to the abundance and widespread distribution of sodium. Despite the growing interest, the development of high-performance sodium cathode materials remains a challenge. In particular, polyanionic compounds are considered as a strong cathode candidate owing to their better cycling stability, a flatter voltage profile, and stronger thermal stability compared to other cathode materials. Here, we report the rational design of a biomimetic bone-inspired polyanionic Na3V2(PO4)3-reduced graphene oxide composite (BI-NVP) cathode that achieves ultrahigh rate charging and ultralong cycling life in a sodium ion battery. At a charging rate of 1 C, BI-NVP delivers 97% of its theoretical capacity and is able to retain a voltage plateau even at the ultra-high rate of 200 C. It also shows long cycling life with capacity retention of 91% after 10 000 cycles at 50 C. The sodium ion battery cells with a BI-NVP cathode and Na metal anode were able to deliver a maximum specific energy of 350 W h kg-1 and maximum specific power of 154 kW kg-1. In situ and postmortem analyses of cycled BI-NVP (including by Raman and XRD spectra) HRTEM, and STEM-EELS, indicate highly reversible dilation-contraction, negligible electrode pulverization, and a stable NVP-reduced graphene oxide layer interface. The results presented here provide a rational and biomimetic material design for the electrode architecture for ultrahigh power and ultralong cyclability of the sodium ion battery full cells when paired with a sodium metal anode.
Original language | English |
---|---|
Article number | e020805 |
Journal | Applied Physics Reviews |
Volume | 7 |
Issue number | 4 |
DOIs | |
Publication status | Published - 2020 Dec 1 |
Bibliographical note
Publisher Copyright:© 2020 Author(s).
All Science Journal Classification (ASJC) codes
- General Physics and Astronomy