Biomimetic Chitin–Silk Hybrids: An Optically Transparent Structural Platform for Wearable Devices and Advanced Electronics

Moo Seok Hong, Gwang Mun Choi, Joohee Kim, Jiuk Jang, Byeongwook Choi, Joong Kwon Kim, Seunghwan Jeong, Seongmin Leem, Hee Young Kwon, Hyun Bin Hwang, Hyeon Gyun Im, Jang Ung Park, Byeong Soo Bae, Jungho Jin

Research output: Contribution to journalArticlepeer-review

75 Citations (Scopus)

Abstract

The cuticles of insects and marine crustaceans are fascinating models for man-made advanced functional composites. The excellent mechanical properties of these biological structures rest on the exquisite self-assembly of natural ingredients, such as biominerals, polysaccharides, and proteins. Among them, the two commonly found building blocks in the model biocomposites are chitin nanofibers and silk-like proteins with β-sheet structure. Despite being wholly organic, the chitinous protein complex plays a key role for the biocomposites by contributing to the overall mechanical robustness and structural integrity. Moreover, the chitinous protein complex alone without biominerals is optically transparent (e.g., dragonfly wings), thereby making it a brilliant model material system for engineering applications where optical transparency is essentially required. Here, inspired by the chitinous protein complex of arthropods cuticles, an optically transparent biomimetic composite that hybridizes chitin nanofibers and silk fibroin (β-sheet) is introduced, and its potential as a biocompatible structural platform for emerging wearable devices (e.g., smart contact lenses) and advanced displays (e.g., transparent plastic cover window) is demonstrated.

Original languageEnglish
Article number1705480
JournalAdvanced Functional Materials
Volume28
Issue number24
DOIs
Publication statusPublished - 2018 Jun 13

Bibliographical note

Funding Information:
M.S.H., G.M.C., J.K., and J.J. contributed equally to this work. This research was supported by the National Research Foundation of Korea (NRF) grant funded by the Korea government MSIP (Grant No. NRF-2014R1A1A1038415), the Wearable Platform Materials Technology Center (WMC) (Grant No. 2016R1A5A1009926), and MOTIE (Grant No. 10052105), the Primary Research Program (Grant No. 17-12-N0101-30) of the Korea Electrotechnology Research Institute (KERI), and KDRC support program for the development of future devices technology for display industry.

Publisher Copyright:
© 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim

All Science Journal Classification (ASJC) codes

  • Chemistry(all)
  • Materials Science(all)
  • Condensed Matter Physics

Fingerprint

Dive into the research topics of 'Biomimetic Chitin–Silk Hybrids: An Optically Transparent Structural Platform for Wearable Devices and Advanced Electronics'. Together they form a unique fingerprint.

Cite this