TY - JOUR
T1 - Biological nutrient and organic removal from meat packing wastewater with a unique sequence of suspended growth and fixed-film reactors
AU - Lim, S. J.
AU - Kim, S. H.
AU - Fox, P.
PY - 2009
Y1 - 2009
N2 - A unique sequence of anaerobic filter/suspended anaerobic/aerobic (AO) reactor/aerobic filter system was developed to alleviate the drawbacks of conventional suspended growth and fixed growth systems. An anaerobic filter (AF) was used to efficiently produce volatile fatty acids (VFAs) prior to the aerobic suspended growth. A second anaerobic reactor was installed in the A/O return activated sludge line to improve phosphorus uptake by potentially controlling glycogen accumulating organisms (GAOs). One biological aerobic filter (BAF) was used for nitrification followed by an anoxic filter for denitrification and a second BAF was used for effluent polishing. The meat packing wastewater had a biochemical oxygen demand (BOD) of 853 mg/L and total nitrogen (T-N) and total phosphorus (T-P) concentrations of 61.1 mg/L and 5.8 mg/L, respectively. The BOD removal efficiency was 99.0-99.7% and the suspended solids (SS) concentration in the effluent was below 10 mg/L. The T-N removal efficiency was maintained at greater than 75.0% except at low C/N ratios. A high T-P removal efficiency, 74.7-83.9%, was also obtained when the system was operated at a hydraulic retention time of 15.7 hrs. The AF successfully produced VFAs that aided in phosphorus removal. Additionally, recycled concrete aggregate used as attachment media in the biological filters continuously provided micronutrients and stabilized the pH.
AB - A unique sequence of anaerobic filter/suspended anaerobic/aerobic (AO) reactor/aerobic filter system was developed to alleviate the drawbacks of conventional suspended growth and fixed growth systems. An anaerobic filter (AF) was used to efficiently produce volatile fatty acids (VFAs) prior to the aerobic suspended growth. A second anaerobic reactor was installed in the A/O return activated sludge line to improve phosphorus uptake by potentially controlling glycogen accumulating organisms (GAOs). One biological aerobic filter (BAF) was used for nitrification followed by an anoxic filter for denitrification and a second BAF was used for effluent polishing. The meat packing wastewater had a biochemical oxygen demand (BOD) of 853 mg/L and total nitrogen (T-N) and total phosphorus (T-P) concentrations of 61.1 mg/L and 5.8 mg/L, respectively. The BOD removal efficiency was 99.0-99.7% and the suspended solids (SS) concentration in the effluent was below 10 mg/L. The T-N removal efficiency was maintained at greater than 75.0% except at low C/N ratios. A high T-P removal efficiency, 74.7-83.9%, was also obtained when the system was operated at a hydraulic retention time of 15.7 hrs. The AF successfully produced VFAs that aided in phosphorus removal. Additionally, recycled concrete aggregate used as attachment media in the biological filters continuously provided micronutrients and stabilized the pH.
UR - http://www.scopus.com/inward/record.url?scp=77649203879&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=77649203879&partnerID=8YFLogxK
U2 - 10.2166/wst.2009.603
DO - 10.2166/wst.2009.603
M3 - Article
C2 - 19955643
AN - SCOPUS:77649203879
SN - 0273-1223
VL - 60
SP - 3189
EP - 3197
JO - Water Science and Technology
JF - Water Science and Technology
IS - 12
ER -