Bayesian learning of a search region for pedestrian detection

Jeonghyun Baek, Sungjun Hong, Jisu Kim, Euntai Kim

Research output: Contribution to journalArticlepeer-review

5 Citations (Scopus)


An efficient pedestrian detection method is proposed for intelligent vehicles in this paper. The proposed method learns the region in which pedestrians are likely to be detected and narrows down the search to the likely region. The likely region is modeled as a Gaussian distribution on the y-axis and its parameters are updated by a Bayesian approach. Thus, the proposed method starts with an exhaustive full search, but gradually narrows down the search by focusing on the likely region. The learning of the likely region is formulated as a Bayesian learning problem and the likely region is analytically derived. The proposed method is combined with two popular pedestrian detection methods, Haar-like Adaboost and HOG-LSVM, and some experiments are conducted with the Caltech pedestrian dataset. The experiments show that the proposed method not only reduces computation time, but also enhances performance by rejecting false positive results.

Original languageEnglish
Pages (from-to)863-885
Number of pages23
JournalMultimedia Tools and Applications
Issue number2
Publication statusPublished - 2016 Jan 1

Bibliographical note

Publisher Copyright:
© 2014, Springer Science+Business Media New York.

All Science Journal Classification (ASJC) codes

  • Software
  • Media Technology
  • Hardware and Architecture
  • Computer Networks and Communications


Dive into the research topics of 'Bayesian learning of a search region for pedestrian detection'. Together they form a unique fingerprint.

Cite this