TY - JOUR
T1 - Bacteroides fragilis toxin stimulates intestinal epithelial cell shedding and γ-secretase-dependent E-cadherin cleavage
AU - Wu, Shaoguang
AU - Rhee, Ki Jong
AU - Zhang, Ming
AU - Franco, Augusto
AU - Sears, Cynthia L.
PY - 2007/6/1
Y1 - 2007/6/1
N2 - Enterotoxigenic Bacteroides fragilis - organisms that live in the colon - secrete a metalloprotease toxin, B. fragilis toxin. This toxin binds to a specific intestinal epithelial cell receptor and stimulates cell proliferation, which is dependent, in part, on E-cadherin degradation and β-catenin-T-cell-factor nuclear signaling. γ-Secretase (or presenilin-1) is an intramembrane cleaving protease and is a positive regulator of E-cadherin cleavage and a negative regulator of β-catenin signaling. Here we examine the mechanistic details of toxin-initiated E-cadherin cleavage. B. fragilis toxin stimulated shedding of cell membrane proteins, including the 80 kDa E-cadherin ectodomain. Shedding of this domain required biologically active toxin and was not mediated by MMP-7, ADAM10 or ADAM17. Inhibition of γ-secretase blocked toxin-induced proteolysis of the 33 kDa intracellular E-cadherin domain causing cell membrane retention of a distinct β-catenin pool without diminishing toxin-induced cell proliferation. Unexpectedly, γ-secretase positively regulated basal cell proliferation dependent on the β-catenin-T-cell-factor complex. We conclude that toxin induces step-wise cleavage of E-cadherin, which is dependent on toxin metalloprotease and γ-secretase. Our results suggest that differentially regulated β-catenin pools associate with the E-cadherin-γ-secretase adherens junction complex; one pool regulated by γ-secretase is important to intestinal epithelial cell homeostasis.
AB - Enterotoxigenic Bacteroides fragilis - organisms that live in the colon - secrete a metalloprotease toxin, B. fragilis toxin. This toxin binds to a specific intestinal epithelial cell receptor and stimulates cell proliferation, which is dependent, in part, on E-cadherin degradation and β-catenin-T-cell-factor nuclear signaling. γ-Secretase (or presenilin-1) is an intramembrane cleaving protease and is a positive regulator of E-cadherin cleavage and a negative regulator of β-catenin signaling. Here we examine the mechanistic details of toxin-initiated E-cadherin cleavage. B. fragilis toxin stimulated shedding of cell membrane proteins, including the 80 kDa E-cadherin ectodomain. Shedding of this domain required biologically active toxin and was not mediated by MMP-7, ADAM10 or ADAM17. Inhibition of γ-secretase blocked toxin-induced proteolysis of the 33 kDa intracellular E-cadherin domain causing cell membrane retention of a distinct β-catenin pool without diminishing toxin-induced cell proliferation. Unexpectedly, γ-secretase positively regulated basal cell proliferation dependent on the β-catenin-T-cell-factor complex. We conclude that toxin induces step-wise cleavage of E-cadherin, which is dependent on toxin metalloprotease and γ-secretase. Our results suggest that differentially regulated β-catenin pools associate with the E-cadherin-γ-secretase adherens junction complex; one pool regulated by γ-secretase is important to intestinal epithelial cell homeostasis.
UR - http://www.scopus.com/inward/record.url?scp=34250884572&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=34250884572&partnerID=8YFLogxK
U2 - 10.1242/jcs.03455
DO - 10.1242/jcs.03455
M3 - Article
C2 - 17504810
AN - SCOPUS:34250884572
SN - 0021-9533
VL - 120
SP - 1944
EP - 1952
JO - Journal of cell science
JF - Journal of cell science
IS - 11
ER -