Background subtraction via truncated nuclear norm minimization

Hyeonggwon Kim, Yoonsik Choe

Research output: Chapter in Book/Report/Conference proceedingConference contribution

4 Citations (Scopus)

Abstract

The background subtraction is one of the main topics in video analysis. Among the various conventional approaches related to this topic, low-rank and sparse decomposition based method has shown a great ability to decompose foreground and background. This method approximates the matrix rank by robust principal component analysis via the nuclear norm minimization. However, since the nuclear norm based method minimizes sum of all singular values, it has limitation that the low-rank may not be well approximated. Especially when the number of input image sequences is limited, nuclear norm minimization cannot clearly separate background and objects. In this paper, to solve this problem, a truncated nuclear norm based method is proposed. This method minimizes the sum of the truncated singular values except the largest few values corresponding to low-rank of background image sequence matrix. Since the rank of background sequence is known to be 1, by minimizing sum of singular values except the largest value only, the more accurate results could be obtained even when the number of frame is limited. The experimental results confirm this efficiency of the proposed method.

Original languageEnglish
Title of host publicationProceedings - 9th Asia-Pacific Signal and Information Processing Association Annual Summit and Conference, APSIPA ASC 2017
PublisherInstitute of Electrical and Electronics Engineers Inc.
Pages447-451
Number of pages5
ISBN (Electronic)9781538615423
DOIs
Publication statusPublished - 2018 Feb 5
Event9th Asia-Pacific Signal and Information Processing Association Annual Summit and Conference, APSIPA ASC 2017 - Kuala Lumpur, Malaysia
Duration: 2017 Dec 122017 Dec 15

Publication series

NameProceedings - 9th Asia-Pacific Signal and Information Processing Association Annual Summit and Conference, APSIPA ASC 2017
Volume2018-February

Other

Other9th Asia-Pacific Signal and Information Processing Association Annual Summit and Conference, APSIPA ASC 2017
Country/TerritoryMalaysia
CityKuala Lumpur
Period17/12/1217/12/15

Bibliographical note

Publisher Copyright:
© 2017 IEEE.

All Science Journal Classification (ASJC) codes

  • Artificial Intelligence
  • Human-Computer Interaction
  • Information Systems
  • Signal Processing

Fingerprint

Dive into the research topics of 'Background subtraction via truncated nuclear norm minimization'. Together they form a unique fingerprint.

Cite this