Abstract
A novel synthesis of morphology-controlled perovskite networked with LaCr0.8Ru0.2O3 nanoparticles was introduced using activated carbons as sacrificial templates. These catalysts were used for the hydrogen production by heavy-hydrocarbon autothermal reforming. To investigate the effect of the carbon templates, morphology-controlled perovskites using activated carbons and a non-templated catalyst were prepared to determine how carbon templates influence the chemical structure of the perovskite. The carbon templates produced a crystalline structure with the well incorporation of Ru under mild calcination conditions. The morphology of the hollow fibers provided a higher specific surface area than that of the porous grain catalyst with a similar average particle size (∼80 nm). It was found that the hollow fibers showed a unique pore structure with large macropores from 1 to 100 μm, which might offer a higher surface area and enhanced mass transfer of the reactants. This provided a higher activation energy for H2 production than the porous grain and non-templated catalysts during the autothermal reforming of heavy hydrocarbons. As a result, the fibrous feature and well-defined chemical structure were crucial factors when cracking the hydrocarbon chain. The hollow fiber catalyst showed high reforming efficiency for H2 production (>65 mol%) from heavy-hydrocarbon fuels during long-term experiments, featuring substantial durability with low carbon deposition and no structural changes.
Original language | English |
---|---|
Pages (from-to) | 446-456 |
Number of pages | 11 |
Journal | Fuel |
Volume | 187 |
DOIs | |
Publication status | Published - 2017 Jan 1 |
Bibliographical note
Publisher Copyright:© 2016 Elsevier Ltd
All Science Journal Classification (ASJC) codes
- Chemical Engineering(all)
- Fuel Technology
- Energy Engineering and Power Technology
- Organic Chemistry