Abstract
In the manufacture of flat display panels, salt-and-pepper defects are caused by a malfunction in the chemical process. The defects are characterized by the dispersion of many black and white pixels in the display panels; these pixels are difficult to detect with conventional automatic fault detection methods that specialize in recognizing certain shapes, such as line or mura defects (stains). This study proposes a simple but high-performance salt-and-pepper defect detection method. First, the background image of the original image is generated using the mean filter in the spatial domain to create a noise image, which is the subtraction of the two images. A binary image is then obtained from the noise image to count the defective pixels, and a statistical control chart that monitors the number of defective pixels identifies the panel defects. Two experiments were conducted with images collected from an organic light-emitting diode inspection process, and the proposed method showed excellent performance with respect to classification accuracy and processing time.
Original language | English |
---|---|
Pages (from-to) | 1047-1055 |
Number of pages | 9 |
Journal | Journal of Intelligent Manufacturing |
Volume | 30 |
Issue number | 3 |
DOIs | |
Publication status | Published - 2019 Mar 15 |
Bibliographical note
Publisher Copyright:© 2017, Springer Science+Business Media New York.
All Science Journal Classification (ASJC) codes
- Software
- Industrial and Manufacturing Engineering
- Artificial Intelligence