Automated CNN-Based tooth segmentation in cone-beam CT for dental implant planning

S. Lee, S. Woo, J. Yu, J. Seo, J. Lee, C. Lee

Research output: Contribution to journalArticlepeer-review

33 Citations (Scopus)


Accurate tooth segmentation is an essential step for reconstructing the three-dimensional tooth models used in various clinical applications. In this paper, we propose a convolutional neural network (CNN) based method for fully-automatic tooth segmentation with multi-phase training and preprocessing. For multi-phase training, we defined and used sub-volumes of different sizes to produce stable and fast convergence. To deal with the cone-beam computed tomography (CBCT) images from various CBCT scanners, we used a histogram-based method as a preprocessing step to estimate the average gray density level of the bone and tooth regions. Also, we developed a posterior probability function. Regularizing the CNN models with spatial dropout layers and replacing the convolutional layers with dense convolution blocks further improved the segmentation performance. Experimental results showed that the proposed method compared favorably with existing methods.

Original languageEnglish
Article number9007457
Pages (from-to)50507-50518
Number of pages12
JournalIEEE Access
Publication statusPublished - 2020

Bibliographical note

Funding Information:
This work was supported in part by the National Research Foundation of Korea (NRF) Grant funded by the Korean Government (MSIT) under Grant 2018R1D1A1B07050345.

Publisher Copyright:
© 2013 IEEE.

All Science Journal Classification (ASJC) codes

  • Engineering(all)
  • Materials Science(all)
  • Computer Science(all)


Dive into the research topics of 'Automated CNN-Based tooth segmentation in cone-beam CT for dental implant planning'. Together they form a unique fingerprint.

Cite this