Atomically dispersed iridium catalysts on silicon photoanode for efficient photoelectrochemical water splitting

Sang Eon Jun, Youn Hye Kim, Jaehyun Kim, Woo Seok Cheon, Sungkyun Choi, Jinwook Yang, Hoonkee Park, Hyungsoo Lee, Sun Hwa Park, Ki Chang Kwon, Jooho Moon, Soo Hyun Kim, Ho Won Jang

Research output: Contribution to journalArticlepeer-review

23 Citations (Scopus)


Stabilizing atomically dispersed single atoms (SAs) on silicon photoanodes for photoelectrochemical-oxygen evolution reaction is still challenging due to the scarcity of anchoring sites. Here, we elaborately demonstrate the decoration of iridium SAs on silicon photoanodes and assess the role of SAs on the separation and transfer of photogenerated charge carriers. NiO/Ni thin film, an active and highly stable catalyst, is capable of embedding the iridium SAs in its lattices by locally modifying the electronic structure. The isolated iridium SAs enable the effective photogenerated charge transport by suppressing the charge recombination and lower the thermodynamic energy barrier in the potential-determining step. The Ir SAs/NiO/Ni/ZrO2/n-Si photoanode exhibits a benchmarking photoelectrochemical performance with a high photocurrent density of 27.7 mA cm−2 at 1.23 V vs. reversible hydrogen electrode and 130 h stability. This study proposes the rational design of SAs on silicon photoelectrodes and reveals the potential of the iridium SAs to boost photogenerated charge carrier kinetics.

Original languageEnglish
Article number609
JournalNature communications
Issue number1
Publication statusPublished - 2023 Dec

Bibliographical note

Publisher Copyright:
© 2023, The Author(s).

All Science Journal Classification (ASJC) codes

  • Physics and Astronomy(all)
  • Chemistry(all)
  • Biochemistry, Genetics and Molecular Biology(all)


Dive into the research topics of 'Atomically dispersed iridium catalysts on silicon photoanode for efficient photoelectrochemical water splitting'. Together they form a unique fingerprint.

Cite this