Astaxanthin Inhibits Matrix Metalloproteinase Expression by Suppressing PI3K/AKT/mTOR Activation in Helicobacter pylori-Infected Gastric Epithelial Cells

Jimin Lee, Joo Weon Lim, Hyeyoung Kim

Research output: Contribution to journalArticlepeer-review

12 Citations (Scopus)

Abstract

Helicobacter pylori (H. pylori) increases production of reactive oxygen species (ROS) and activates signaling pathways associated with gastric cell invasion, which are mediated by matrix metalloproteinases (MMPs). We previously demonstrated that H. pylori activated mitogen-activated protein kinase (MAPK) and increased expression of MMP-10 in gastric epithelial cells. MMPs degrade the extracellular matrix, enhancing tumor invasion and cancer progression. The signaling pathway of phosphatidylinositol 3-kinase (PI3K)/serine/threonine protein kinase B (AKT)/mammalian target of rapamycin (mTOR) is associated with MMP expression. ROS activates PIK3/AKT/mTOR signaling in cancer. Astaxanthin, a xanthophyll carotenoid, shows antioxidant activity by reducing ROS levels in gastric epithelial cells infected with H. pylori. This study aimed to determine whether astaxanthin inhibits MMP expression, cell invasion, and migration by reducing the PI3K/AKT/mTOR signaling in H. pylori-infected gastric epithelial AGS cells. H. pylori induced PIK3/AKT/mTOR and NF-κB activation, decreased IκBα, and induced MMP (MMP-7 and -10) expression, the invasive phenotype, and migration in AGS cells. Astaxanthin suppressed these H. pylori-induced alterations in AGS cells. Specific inhibitors of PI3K, AKT, and mTOR reversed the H. pylori-stimulated NF-κB activation and decreased IκBα levels in the cells. In conclusion, astaxanthin suppressed MMP expression, cell invasion, and migration via inhibition of PI3K/AKT/mTOR/NF-κB signaling in H. pylori-stimulated gastric epithelial AGS cells.

Original languageEnglish
Article number3427
JournalNutrients
Volume14
Issue number16
DOIs
Publication statusPublished - 2022 Aug

Bibliographical note

Publisher Copyright:
© 2022 by the authors.

All Science Journal Classification (ASJC) codes

  • Food Science
  • Nutrition and Dietetics

Fingerprint

Dive into the research topics of 'Astaxanthin Inhibits Matrix Metalloproteinase Expression by Suppressing PI3K/AKT/mTOR Activation in Helicobacter pylori-Infected Gastric Epithelial Cells'. Together they form a unique fingerprint.

Cite this