TY - JOUR
T1 - Artificial Intelligence-Based Electrocardiographic Biomarker for Outcome Prediction in Patients With Acute Heart Failure
T2 - Prospective Cohort Study
AU - Cho, Youngjin
AU - Yoon, Minjae
AU - Kim, Joonghee
AU - Lee, Ji Hyun
AU - Oh, Il Young
AU - Lee, Chan Joo
AU - Kang, Seok Min
AU - Choi, Dong Ju
N1 - Publisher Copyright:
© 2024 JMIR Publications Inc.. All rights reserved.
PY - 2024
Y1 - 2024
N2 - Background: Although several biomarkers exist for patients with heart failure (HF), their use in routine clinical practice is often constrained by high costs and limited availability. Objective: We examined the utility of an artificial intelligence (AI) algorithm that analyzes printed electrocardiograms (ECGs) for outcome prediction in patients with acute HF. Methods: We retrospectively analyzed prospectively collected data of patients with acute HF at two tertiary centers in Korea. Baseline ECGs were analyzed using a deep-learning system called Quantitative ECG (QCG), which was trained to detect several urgent clinical conditions, including shock, cardiac arrest, and reduced left ventricular ejection fraction (LVEF). Results: Among the 1254 patients enrolled, in-hospital cardiac death occurred in 53 (4.2%) patients, and the QCG score for critical events (QCG-Critical) was significantly higher in these patients than in survivors (mean 0.57, SD 0.23 vs mean 0.29, SD 0.20; P<.001). The QCG-Critical score was an independent predictor of in-hospital cardiac death after adjustment for age, sex, comorbidities, HF etiology/type, atrial fibrillation, and QRS widening (adjusted odds ratio [OR] 1.68, 95% CI 1.47-1.92 per 0.1 increase; P<.001), and remained a significant predictor after additional adjustments for echocardiographic LVEF and N-terminal prohormone of brain natriuretic peptide level (adjusted OR 1.59, 95% CI 1.36-1.87 per 0.1 increase; P<.001). During long-term follow-up, patients with higher QCG-Critical scores (>0.5) had higher mortality rates than those with low QCG-Critical scores (<0.25) (adjusted hazard ratio 2.69, 95% CI 2.14-3.38; P<.001). Conclusions: Predicting outcomes in patients with acute HF using the QCG-Critical score is feasible, indicating that this AI-based ECG score may be a novel biomarker for these patients.
AB - Background: Although several biomarkers exist for patients with heart failure (HF), their use in routine clinical practice is often constrained by high costs and limited availability. Objective: We examined the utility of an artificial intelligence (AI) algorithm that analyzes printed electrocardiograms (ECGs) for outcome prediction in patients with acute HF. Methods: We retrospectively analyzed prospectively collected data of patients with acute HF at two tertiary centers in Korea. Baseline ECGs were analyzed using a deep-learning system called Quantitative ECG (QCG), which was trained to detect several urgent clinical conditions, including shock, cardiac arrest, and reduced left ventricular ejection fraction (LVEF). Results: Among the 1254 patients enrolled, in-hospital cardiac death occurred in 53 (4.2%) patients, and the QCG score for critical events (QCG-Critical) was significantly higher in these patients than in survivors (mean 0.57, SD 0.23 vs mean 0.29, SD 0.20; P<.001). The QCG-Critical score was an independent predictor of in-hospital cardiac death after adjustment for age, sex, comorbidities, HF etiology/type, atrial fibrillation, and QRS widening (adjusted odds ratio [OR] 1.68, 95% CI 1.47-1.92 per 0.1 increase; P<.001), and remained a significant predictor after additional adjustments for echocardiographic LVEF and N-terminal prohormone of brain natriuretic peptide level (adjusted OR 1.59, 95% CI 1.36-1.87 per 0.1 increase; P<.001). During long-term follow-up, patients with higher QCG-Critical scores (>0.5) had higher mortality rates than those with low QCG-Critical scores (<0.25) (adjusted hazard ratio 2.69, 95% CI 2.14-3.38; P<.001). Conclusions: Predicting outcomes in patients with acute HF using the QCG-Critical score is feasible, indicating that this AI-based ECG score may be a novel biomarker for these patients.
KW - acute heart failure
KW - artificial intelligence
KW - deep learning
KW - electrocardiography
UR - http://www.scopus.com/inward/record.url?scp=85197485613&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85197485613&partnerID=8YFLogxK
U2 - 10.2196/52139
DO - 10.2196/52139
M3 - Article
C2 - 38959500
AN - SCOPUS:85197485613
SN - 1439-4456
VL - 26
JO - Journal of medical Internet research
JF - Journal of medical Internet research
IS - 1
M1 - e52139
ER -