Article improving emergency department efficiency by patient scheduling using deep reinforcement learning

Seunghoon Lee, Young Hoon Lee

Research output: Contribution to journalArticlepeer-review

20 Citations (Scopus)

Abstract

Emergency departments (ED) in hospitals usually suffer from crowdedness and long waiting times for treatment. The complexity of the patient’s path flows and their controls come from the patient’s diverse acute level, personalized treatment process, and interconnected medical staff and resources. One of the factors, which has been controlled, is the dynamic situation change such as the patient’s composition and resources’ availability. The patient’s scheduling is thus complicated in consideration of various factors to achieve ED efficiency. To address this issue, a deep reinforcement learning (RL) is designed and applied in an ED patients’ scheduling process. Before applying the deep RL, the mathematical model and the Markov decision process (MDP) for the ED is presented and formulated. Then, the algorithm of the RL based on deep Q-networks (DQN) is designed to determine the optimal policy for scheduling patients. To evaluate the performance of the deep RL, it is compared with the dispatching rules presented in the study. The deep RL is shown to outperform the dispatching rules in terms of minimizing the weighted waiting time of the patients and the penalty of emergent patients in the suggested scenarios. This study demonstrates the successful implementation of the deep RL for ED applications, particularly in assisting decision-makers under the dynamic environment of an ED.

Original languageEnglish
Article number77
JournalHealthcare (Switzerland)
Volume8
Issue number2
DOIs
Publication statusPublished - 2020

Bibliographical note

Funding Information:
Funding: This work was supported by the National Research Foundation of Korea (NRF) grant funded by the Korea government (MSIT) (2017R1E1A1A03070757).

Publisher Copyright:
© 2020 by the authors. Licensee MDPI, Basel, Switzerland.

All Science Journal Classification (ASJC) codes

  • Health Informatics
  • Health Policy
  • Health Information Management
  • Leadership and Management

Fingerprint

Dive into the research topics of 'Article improving emergency department efficiency by patient scheduling using deep reinforcement learning'. Together they form a unique fingerprint.

Cite this