Approximate multi-objective optimization using conservative and feasible moving least squares method: Application to automotive knuckle design

Chang Yong Song, Ha Young Choi, Jongsoo Lee

Research output: Contribution to journalArticlepeer-review

7 Citations (Scopus)

Abstract

The original version of the moving least squares method (MLSM) does not always ensure solution feasibility for nonlinear and/or non-convex functions in the context of meta-model-based approximate optimization. The paper explores a new implementation of MLSM that ensures the conservative feasibility of Pareto optimal solutions in non-dominated sorting genetic algorithm (NSGA-II)-based approximate multi-objective optimization. We devised a 'conservative and feasible MLSM' (CF-MLSM) to realize the conservativeness and feasibility of multi-objective Pareto optimal solutions for both unconstrained and constrained problems. We verified the usefulness of our proposed approach by exploring strength-based sizing optimization of an automotive knuckle component under bump and brake loading constraints.

Original languageEnglish
Pages (from-to)851-861
Number of pages11
JournalStructural and Multidisciplinary Optimization
Volume49
Issue number5
DOIs
Publication statusPublished - 2014 May

Bibliographical note

Funding Information:
This research was supported by the Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education, Science and Technology (2011-0024829 & 2012R1A1A1002897).

All Science Journal Classification (ASJC) codes

  • Software
  • Control and Systems Engineering
  • Computer Science Applications
  • Computer Graphics and Computer-Aided Design
  • Control and Optimization

Fingerprint

Dive into the research topics of 'Approximate multi-objective optimization using conservative and feasible moving least squares method: Application to automotive knuckle design'. Together they form a unique fingerprint.

Cite this