Analyzing thermal characteristics of urban streets using a thermal imaging camera: A case study on commercial streets in Seoul, Korea

Sugie Lee, Hyunbin Moon, Yeri Choi, Dong Keun Yoon

Research output: Contribution to journalArticlepeer-review

29 Citations (Scopus)


Due to continuing city growth and global warming over the past decades, urban heat island (UHI) effects, referring to the phenomena wherein the ambient air temperatures in cities are higher than those in rural areas, have become a serious threat to urban populations. Impervious surfaces, buildings with low-albedo materials, and a lack of vegetated areas are the major causes of poor urban thermal environments, particularly during the summer. Previous research has focused primarily on the thermal characteristics of individual building units. Few studies consider the impact of the street-scale thermal environments on the surface temperature, which affects pedestrian thermal comfort. The purpose of this study is to analyze the thermal characteristics of various physical elements on urban streets using thermal imaging cameras, and present policy implications for improving pedestrian thermal comfort. This study examines street-scale thermal environments of three major commercial streets: Garosu road, Serosu road, and Narosu road, in Seoul, Korea. This study conducted field measurements both during the day and the night in June 2017 in order to investigate changes in the urban surface temperatures across time. The results show that street trees are the most effective mitigation element for reducing surface temperatures. With regard to building use types, the highest surface temperatures are typically measured near restaurant buildings. Building façades that are dark-colored or partially covered with a metal contribute to high surface temperatures. Similarly, the temperatures of artificial turf or wooden decks on urban streets are also significantly high during the daytime. The thermal characteristics of various urban street elements should be considered to reduce the surface temperature and mitigate the urban heat island effect.

Original languageEnglish
Article number519
JournalSustainability (Switzerland)
Issue number2
Publication statusPublished - 2018 Feb 14

Bibliographical note

Publisher Copyright:
© 2018 by the authors.

All Science Journal Classification (ASJC) codes

  • Geography, Planning and Development
  • Renewable Energy, Sustainability and the Environment
  • Environmental Science (miscellaneous)
  • Energy Engineering and Power Technology
  • Management, Monitoring, Policy and Law


Dive into the research topics of 'Analyzing thermal characteristics of urban streets using a thermal imaging camera: A case study on commercial streets in Seoul, Korea'. Together they form a unique fingerprint.

Cite this