Analytic solution for fuel-optimal reconfiguration in relative motion

Research output: Contribution to journalArticlepeer-review

38 Citations (Scopus)

Abstract

The current paper presents simple and general analytic solutions to the optimal reconfiguration of multiple satellites governed by a variety of linear dynamic equations. The calculus of variations is used to analytically find optimal trajectories and controls. Unlike what has been determined from previous research, the inverse of the fundamental matrix associated with the dynamic equations is not required for the general solution in the current study if a basic feature in the state equations is met. This feature is very common due to the fact that most relative motion equations are represented in the LVLH frame. The method suggested not only reduces the amount of calculations required, but also allows predicting the explicit form of optimal solutions in advance without having to solve the problem. It is illustrated that the optimal thrust vector is a function of the fundamental matrix of the given state equations, and other quantities, such as the cost function and the state vector during the reconfiguration, can be concisely represented as well. The analytic solutions developed in the current paper can be applied to most reconfiguration problems in linearized relative motions. Numerical simulations confirm the brevity and accuracy of the general analytic solutions developed in the current paper.

Original languageEnglish
Pages (from-to)495-512
Number of pages18
JournalJournal of Optimization Theory and Applications
Volume141
Issue number3
DOIs
Publication statusPublished - 2009 Jun

Bibliographical note

Funding Information:
This work was supported by the Korea Science and Engineering Foundation (KOSEF) through the National Research Lab. Program funded by the Ministry of Education, Science and Technology (No. M10600000282-06J0000-28210).

All Science Journal Classification (ASJC) codes

  • Management Science and Operations Research
  • Control and Optimization
  • Applied Mathematics

Fingerprint

Dive into the research topics of 'Analytic solution for fuel-optimal reconfiguration in relative motion'. Together they form a unique fingerprint.

Cite this