Abstract
Intelligent gas monitoring system is having its widespread applications. It essentially requires an accurate classification with precise quantification of gases/odors. Although, gas sensor arrays are capable of generating signatures however, mostly these signatures are complex and have subtle information. Therefore, in this paper, an efficient sensory system has been proposed for intelligent gas monitoring. Concept of analysis space transformation has been utilized for accurate classification of gases/ odors. Also, the drawback of data preprocessing in quantification has been illustrated by comparing the quantifier performance for the processed and raw responses. Further, the proposed sensory system has elevated the classification accuracy from 96% to 98.74% along with the quantification accuracy from 17.65% to 94%.
Original language | English |
---|---|
Title of host publication | Proceedings - International SoC Design Conference, ISOCC 2020 |
Publisher | Institute of Electrical and Electronics Engineers Inc. |
Pages | 338-339 |
Number of pages | 2 |
ISBN (Electronic) | 9781728183312 |
DOIs | |
Publication status | Published - 2020 Oct 21 |
Event | 17th International System-on-Chip Design Conference, ISOCC 2020 - Yeosu, Korea, Republic of Duration: 2020 Oct 21 → 2020 Oct 24 |
Publication series
Name | Proceedings - International SoC Design Conference, ISOCC 2020 |
---|
Conference
Conference | 17th International System-on-Chip Design Conference, ISOCC 2020 |
---|---|
Country/Territory | Korea, Republic of |
City | Yeosu |
Period | 20/10/21 → 20/10/24 |
Bibliographical note
Publisher Copyright:© 2020 IEEE.
All Science Journal Classification (ASJC) codes
- Energy Engineering and Power Technology
- Electrical and Electronic Engineering
- Instrumentation
- Artificial Intelligence
- Hardware and Architecture