An efficient coded streaming using clients’ cache

Tae Won Ban, Woongsup Lee, Jongyeol Ryu

Research output: Contribution to journalArticlepeer-review

3 Citations (Scopus)

Abstract

As multimedia traffic has been increasing and is expected to grow more sharply, various technologies using caches have been attracting lots of attention. As one breakthrough technology to deal with the explosively growing traffic, exclusive OR (XOR)-based index coding has been widely investigated because it can greatly enhance the efficiency of network resource by reducing the number of transmissions. In this paper, we investigate how to apply XOR-based index coding to large-scaled practical streaming systems for video traffic that accounts for more than 70% of total Internet traffic. Contrary to most previous studies that have focused on theoretical analysis of optimal performance or development of optimal index coding schemes, our study proposes a new XOR coding-based video streaming (XC). We also propose a new grouping algorithm for creating XC groups while guaranteeing the complete backward compatibility of XC with existing streaming schemes such as unicast (UC), multicast (MC), and broadcast (BC). The performance of the proposed scheme is analyzed in two steps. First, the behavior of video contents in caches at clients is modeled as a Markov chain, and the steady-state probabilities and caching probabilities for each piece of video content are derived. Based on the probabilities, the performance of the proposed system is then analyzed in terms of the average number of connections that each client requires in order to receive one video content. Our numerical results show that the proposed video streaming scheme using XC can reduce the average number of transmissions by up to 18%, compared to the conventional scheme.

Original languageEnglish
Article number6220
Pages (from-to)1-16
Number of pages16
JournalSensors (Switzerland)
Volume20
Issue number21
DOIs
Publication statusPublished - 2020 Sept 1

Bibliographical note

Publisher Copyright:
© 2020 by the authors. Licensee MDPI, Basel, Switzerland.

All Science Journal Classification (ASJC) codes

  • Analytical Chemistry
  • Information Systems
  • Instrumentation
  • Atomic and Molecular Physics, and Optics
  • Electrical and Electronic Engineering
  • Biochemistry

Fingerprint

Dive into the research topics of 'An efficient coded streaming using clients’ cache'. Together they form a unique fingerprint.

Cite this