Abstract
In this paper, we provide an analytical framework for investigating the efficiency of a consensus-based model for tackling global optimization problems. This work justifies the optimization algorithm in the mean-field sense showing the convergence to the global minimizer for a large class of functions. Theoretical results on consensus estimates are then illustrated by numerical simulations where variants of the method including nonlinear diffusion are introduced.
Original language | English |
---|---|
Article number | 00276 |
Journal | Mathematical Models and Methods in Applied Sciences |
Volume | 28 |
Issue number | 6 |
DOIs | |
Publication status | Published - 2018 Jun 15 |
Bibliographical note
Funding Information:JAC was partially supported by the Royal Society by a Wolfson Research Merit Award and by EPSRC Grant Number EP/P031587/1. Y-PC was supported by the Alexander Humboldt Foundation through the Humboldt Research Fellowship for Postdoctoral Researchers. Y-PC was also supported by NRF Grants (NRF-2017R1C1B2012918 and 2017R1A4A1014735). CT was partially supported by a “Kurzstipendium für Doktorandinnen und Doktoranden” by the German Academic Exchange Service. OT is thankful to Jim Portegies for stimulating discussions.
Publisher Copyright:
© 2018 World Scientific Publishing Company.
All Science Journal Classification (ASJC) codes
- Modelling and Simulation
- Applied Mathematics